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CHAPTER 0

Overview

Back to the Top.

1. Motivations/Applications

A few sample results that turn out to be related to homogeneous dynamics are listed.

1.1. Horocycles on constant negative curvature surfaces. EquipH2 := {x+i y ∈C, y > 0} with the metric dx2 +dy2

y2 . Let Γ≤ Isom(H2)

be a discrete (torsion free) subgroup such that H2/Γ is compact (such a subgroup is called a uniform lattice). Then H2/Γ is a compact
surface of constant negative curvature. Conversely, every surface with constant negative curvature arises this way. Let π :H2 →H2/Γ=
M be the quotient map.

Consider a horocycle H inH2. Explicitly, for each v ∈ {x+i y, y = 0}, a horocycle based at v is a circle (with respect to the Euclidean
metric) inH2 tangent to {y = 0} at v . For v =∞, a horocycle based at v is a horizontal line above {y = 0}.

Now we take the image of H under the projection π.

THEOREM 1.1 ([Hed36]). For every H , π(H ) is dense in M.

If M =H2/Γ (Γ≤ Isom(H2) still discrete) is just of finite volume, then

THEOREM 1.2. 1. π(H ) is either closed or dense in M.
2. Let π(H i ) be a sequence of closed horocycles, then as the length goes to infinity, π(H i ) becomes dense in M.

REMARK 1.3. Assume M =H2/Γ has finite volume. Then there exists closed π(H ) iff M is non-compact.

By comparison, the image under π of a geodesic is very different. The image could be closed, dense, or in between. And closed
geodesics do not necessarily equidistribute towards the volume measure (though on average they do equidistribute).

1.2. Isometric immersion of hyperbolic spaces. Let H3 be the three dimensional hyperbolic space {(x + i y, z) ∈ C×R, z > 0}
equipped with the metric 1

z2 (dx2+dy2+dz2). Let Γ ≤ H3 be a discrete (torsion free) subgroup, such that H3 is compact (finite vol-

ume suffices). Consider an isometric embedding ι :H2 →H3. The image of ι can be explicitly described. There are two cases:

1. given a circle on {z = 0}, then there exists a unique half-sphere inH3 whose boundary is this given circle;
2. given a line on {z = 0}, then there exists a unique half-plane inH3 whose boundary is this given line.

Then ι(H2) is either a half-sphere or a half-plane described above. Similarly, we consider the image of ι(H2) under π :H3 →H3/Γ=: M ,

THEOREM 1.4. 1. π(ι(H2)) is either closed or dense in M;
2. Given an infinite sequence of distinct closed π(ιi (H2)), then limi π(ιi (H2)) is dense in M.

REMARK 1.5. That the volume of π(ιi (H2)) would go to infinity is automatic.

1.3. Oppenheim conjecture/Margulis theorem. Consider a non-degenerate real quadratic form in three (larger than 3 also ok)
variables, viewed as a function Q : R3 → R. Assume it is indefinite. Note that if Q is a quadratic form with rational coefficients or
proportional to such a form, then Q(Z3) is discrete in R.

THEOREM 1.6. If Q is NOT proportional to a quadratic form with rational coefficients, then Q(Z3) is dense in R.

REMARK 1.7. It is also true replacing Z3 by primitive vectors. The proof is a bit harder.

REMARK 1.8. This is false if Q has two variables.

The above theorem admits a quantitative version in certain cases. Let Q be a (nondegenerate) quadratic form in 4 variables of
signature (3,1) (what follows does not apply to signature (2,2), (1,2)). Assume Q is irrational as above.

THEOREM 1.9. There exists λQ > 0 such that for every a < b ∈R,

#
{

x ∈Z4∣∣ Q(x) ∈ (a,b), ‖x‖ ≤ T
}∼ Vol

{
x ∈R4∣∣ Q(x) ∈ (a,b), ‖x‖ ≤ T

}∼λQ (b −a)T 2

1.4. Littlewood conjecture. Letα ∈R (assume everything is irrational just in case of some trivialities). By pigeon-hole principle(?),
one can show that

inf
(m 6=0,n)∈Z2

|m| · |mα+n| ≤ 1.

On the other hand there exists α ("badly approximable numbers") such that

inf
(m 6=0,n)∈Z2

|m| · |mα+n| > 0.

The Littlewood conjecture is

CONJECTURE 1.10. For every pair (α,β) ∈R2 irrational,

inf
(m 6=0,n1,n2)∈Z3

|m| · |mα+n1| · |mβ+n2| = 0.
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2 0. OVERVIEW

To make it look closer to the Oppenheim conjecture, you may write lα(x, y, z) := αx + y , lβ(x, y) := βx + z and ϕ(x, y, z) := x. Let
L(x, y, z) := ϕ · lα · lβ. Then the conjecture asserts that when L is “irrational”, then inf(x,y,z)∈Z3 |L(x, y, z)| is dense at 0. By comparison,

the Oppenheim conjecture is equivalent to Q(Z3) being dense at 0.
Our current knowledge is

THEOREM 1.11. The set {
(α,β) ∈R2, that fails this conjecture

}
has Hausdorff dimension 0.

REMARK 1.12. For every δ> 0, there exists (α,β) such that

liminf
n∈Z

n1+δ ‖nα‖∥∥nβ
∥∥> 0.

According to [Gal62], this was done in [Spe42]. So the exponent on n is the best one can hope for. On the other hand, maybe one can
improve n by logn (see [Gal62] for some restrictions though).

1.5. Quantum unique ergodicity. Let (M ,d) be a closed hyperbolic surface of constant negative curvature. Let∆ be the Laplacian

operator −y2( ∂2

∂x2 + ∂2

∂y2 ).

Fact 1. Eigenvalues of ∆ are non-negative and discrete in R, say enumerated as

0 =λ1 <λ2 < ...

Fact 2. For each λi , the eigenspace Eλi consists of smooth functions and has finite dimension;
Fact 3. Different eigenspaces are mutually orthogonal and L2(M) is spanned by them.

(see e.g. Thm 3.2.1, Jost, Riemannian Geometry; Thm 4.43, Gallot, Hulin, Lafontaine.)
Now take fi ∈ Eλi . We are interested in the limiting behavior of the sequence of measures {| fi |2 Vol}, normalized to be probability

measures.
A theorem (quantum ergodicity) of Snirelman says that there exists a density one subsequence ni such that lim | fni |2 Vol = Vol

(suitably normalized) in the weak* topology (this theorem holds for more general compact Riemannian manifold, as long as the geo-
desic flow is ergodic, a property that holds for every negatively curved surface).

CONJECTURE 1.13 (Quantum unique ergodicity). lim | fn |2 Vol = Vol holds without passing to any subsequence.

This is still open. Progress is made when the fundamental group is a "congruence subgroup" where there is an additional supply
of operators, called Hecke operators, that commute with the Laplacian.

THEOREM 1.14. Assume { fi } is a sequence of Hecke-Laplacian eigenfunctions. Then

lim | fn |2 Vol = Vol

in the weak* topology.

In the non-compact congruence case, this also holds for Hecke-Maass forms whose proof requires one more step to guarantee
non-divergence.

2. Measure rigidity

2.1. Unipotent flows. Consider SL2(R) and a discrete subgroup Γ. Equip SL2(R) with a right invariant Riemannian metric. Then
the volume measure mX on SL2(R)/Γ is left invariant under SL2(R). We normalize it to be a probability measure.

Consider the subgroup

U :=
{

us :=
[

1 s
0 1

]
, s ∈R

}
THEOREM 2.1. Assume SL2(R)/Γ is compact. Then mX is the unique U-invariant probability measure.

This would immediately imply the denseness result above.

THEOREM 2.2. Assume SL2(R)/Γ has finite volume. Then each U-invariant probability measure is a convex combination (possible
in the form of an integral) of the following

1. mX ;
2. the U-invariant measure supported on a closed (and compact) orbit of U.

The implication to orbit closure requires an analysis on this convex combination.
In general, Ratner’s measure classification on ergodic invariant measures for Ad-unipotent flows roughly reads as follows.

THEOREM 2.3 (Measure rigidity theorem). Assume the following

• a connected Lie group (2nd countable) G together with a discrete subgroup Γ;
• a one-parameter Ad-unipotent subgroup U = {us , s ∈R} of G.

Then every U-invariant ergodic probability measure µ on G/Γ is homogeneous.

Ad-unipotent means that the image of U under the Adjoint representation in GL(g) consist of unipotent matrices.
For a measure µ on G/Γ define the closed subgroup of G by

H :=Gµ := {g ∈G , g∗µ=µ}.

We say that a probability measure µ is homogeneous if there exists x ∈ X =G/Γ such that µ(H x) = 1.

REMARK 2.4. When G is a semisimple closed subgroup of SLn , Ad-unipotent is the same as being unipotent in SLn .

REMARK 2.5. Various “connected” assumptions may be dropped with similar conclusions. E.g. one may consider us∈Z.

REMARK 2.6. Let H, x be as in the theorem and the definition above. Then H x is closed in G/Γ. This is proved in [Rag72, Sec.1.13]
assuming G/Γ admits a finite G-invariant measure (i.e., Γ is a lattice in G), but the proof carries through without this assumption.

REMARK 2.7. Let H, x be as in the theorem and the definition above. Then by modifying x, one can show that H x = H◦x and U is
contained in H◦.



3. FURTHER READING 3

THEOREM 2.8 (Equidistribution and topological rigidity I). Further assume that Γ is a lattice in G. Then for every x, there exists
U ≤ H ≤G closed connected subgroup such that

1. H x is closed and supports an H-invariant probability measure µH ;
2. for every bounded continuous function f : G/Γ→R,

lim
T→∞

∫ T

0
f (ut · x)dt exists and is equal to

∫
f (x)µH (x).

3. U æµH is ergodic;
4. U · x is dense in H · x.

The logic of Ratner is
Measure rigidity =⇒ Equidistribution =⇒ Topological rigidity.

Nevertheless, there is a different (potential) approach by deducing the topological rigidity bypassing ergodic theory.
The topological rigidity is the original Raghunathan’s conjecture.

THEOREM 2.9 (Topological rigidity II). Let G ,Γ be as in the last theorem. Let L ≤ G be a Lie subgroup generated by one-parameter
Ad-unipotent subgroups. Then for every x ∈ G/Γ, there exists L ≤ H ≤ G and V ≤ L some one-parameter Ad-unipotent subgroup (of G)
such that

1. H x is closed and supports an H-invariant probability measure;
2. Lx =V x = H x;
3. V æµH is ergodic.

2.2. Higher rank diagonalizable action. Fact: Let at :=
[

e t

e−t

]
. Then the {at }t∈R action on SL2(R)/Γ admits many invariant

probability measures/closed sets and they are not easy to classify. The conjecture is that the situation would become better in higher
rank.

Let

A :=


 e t1

e t2

e t3

 ∣∣∣∣∣∣ ti ∈R,
∑

ti = 0

∼=R2.

Consider the A æ SL3(R)/SL3(Z).

CONJECTURE 2.10. • Every ergodic invariant probability measure is homogeneous;
• Every bounded (in the unbounded case, statements need to be modified) orbit of A is homogeneous.

Of course one can propose similar (but necessarily more complicated) conjectures for other (semisimple) Lie groups G and other
A’s.

THEOREM 2.11. Let G := SL3(R), Γ = SL3(Z) and A same as above. Let µ be an A-invariant ergodic probability measure on G/Γ.
Assume for some a ∈ A, hµ(a) > 0. Then µ is the G-invariant probability measure on G/Γ.

The topological implication is that

THEOREM 2.12. The Hausdorff dimension of
{x ∈G/Γ, Ax is bounded}

is 2.

Note that the union of compact A-orbits is a countable union, hence also has Hausdorff dimension 2.
A theorem of slightly different flavor, related to the AQUE theorem above, is

THEOREM 2.13. Let G := SL2(R)×SL2(R), Γ≤G irreducible (e.g. Γ= SL2(Z[
p

2])). Let H := {e}×SL2(R). And

A := {(at , id), t ∈R}

Let µ be an A-invariant probability measure such that

• h(a,ν) > 0 for every ergodic component ν of µ;
• µ is H-recurrent (some assumption weaker than H-invariant),

then µ is the G-invariant probability measure.

REMARK 2.14. Same conclusion holds replacing the 2nd factor SL2(R) by SL2(Qp ). This p-adic version is what is required for the
AQUE theorem.

REMARK 2.15. This theorem is not easily reduced to the ergodic case due to the recurrence condition.

REMARK 2.16. Whether one can eliminate the entropy assumption remains an open problem.

3. Further reading

Here are some general references.
[BM00] is a nice introduction to homogeneous dynamics including a proof of Oppenheim conjecture in the last chapter.
Einsiedler and Ward have a (ongoing) book project on homogeneous dynamics available on the authors’ homepages.
What we plan to cover in this course (and almost everything I write here) can be found in the monograph [EEE+10].





CHAPTER 1

Denseness of horocycles

Back to the Top.

1. Summary

In [Hed36], the author considers curves in the hyperbolic disk with constant “geodesic curvature” (let cur denote this number),
measuring how far a curve is away from being a geodesic. Under this constancy condition, curves are divided into 4 types:

1. cur = 0;
2. cur ∈ (0,1) ;
3. cur = 1;
4. cur > 1.

Geodesics belong to type 1. Type 2 are those equidistant to some geodesic. Type 3 are horocycles. Type 4 are Euclidean circles
in the interior of the disk model. The paper is about their “transitivity modulo Γ”, namely their image in certain hyperbolic surfaces
(orbifolds).

This chapter is about horocycles, that is, curves of type 3 assuming the relevant surface is compact. Actually our discussion applies
to the unit-tangent bundle, not just to the surface itself. Type 4 are compact. It is claimed that type 2 behave like type 1. One can also
show that as the curvature tends to 1, type 2 and type 4 asymptotically behave like type 3.

Firstly, let us introduce some notations

• U :=
{

us :=
[

1 s
0 1

] ∣∣∣∣ s ∈R
}

, A :=
{

at :=
[

e t 0
0 e−t

] ∣∣∣∣ t ∈R
}

;

• Let Γ be a discrete subgroup of SL2(R) and let X := SL2(R)/Γ, equipped with the quotient topology;
• for g ∈ SL2(R), write [g ]Γ for its image in X.

One can identify X (at least when {±1} ⊂ Γ and Γ/± 1 is torsion free) with the unit tangent bundle of some hyperbolic surface.
Moreover, orbits of A are geodesics and orbits of U are horocyles.

THEOREM 1.1. Assume in addition that Γ is cocompact in SL2(R), namely, X is compact. Then the action of U on X is minimal, that
is to say, for every x ∈ X, U.x is dense in X.

In a dual formulation, this says that for every nonzero vector v ∈ R2, Γ.v is dense in R2. This fails for Γ= SL2(Z), but SL2(Z) is not
cocompact.

REMARK 1.2. The proof below applies equally well to the discrete case {us }s∈Z with the same conclusion. Namely, for every x ∈ X,
{us .x}s∈Z,s≥0 is dense in X. However, whether {us2 .x}s∈Z is dense in X seems unknown (see [Zhe21] and references therein).

This chapter roughly corresponds to [BM00, Chapter IV, Section 2].

2. Injectivity radius

We fix some right invariant metric d(·, ·) on SL2(R), compatible with the topology. We will not be bothered about the explicit form
of the metric. So just take its existence as a fact. Assuming this, define the quotient metric on SL2(R)/Γ by

d([g ]Γ, [h]Γ) := inf
γ∈Γ

d(gγ,h) = inf
γ1,γ2∈Γ

d(gγ1,hγ2).

Fix such a metric, we can define the injectivity radius at a point x ∈ X by

InjRad(x) := inf
{
δ> 0

∣∣ g 7→ g .x is injective on d(g , id) < δ }
.

Since Γ is discrete, InjRad(x) > 0 for all x ∈ X. Also note that InjRad is continuous. Hence if Γ is cocompact, there exists (and we fix such
an) rX > 0 such that InjRad(x) ≥ rX for all x ∈ X.

Also, one can check that for d(gi , id) < rx
4 for i = 1,2, we have d(g1.x, g2.x) = d(g1, g2).

LEMMA 2.1. Assume Γ is cocompact. Then there are no compact U-orbits in X, that is, for every s 6= 0 and x ∈ X, us .x 6= x. As every
unipotent matrix in SL2(R) is conjugate to an element of U, this implies that Γ contains no (non-identity) unipotent matrices.

PROOF. Assume otherwise, then we can find g0 ∈ SL2(R) such that

s0 := inf
{

s > 0
∣∣us .g0Γ= g0Γ

}> 0.

In the current case inf is actually achieved at s0 and us0 .g0Γ= g0Γ. Consider

a−t us0 g0Γ= a−t g0Γ

=⇒
[

1 e−2t s0

0 1

][
e−t 0

0 e t

]
g0Γ=

[
e−t 0

0 e t

]
g0Γ.

As t →+∞, this implies the existence of compact orbit of U of arbitrarily small period, which is impossible due to the fact rX > 0. More
explicitly, for t large enough such that

d

(
id,

[
1 e−2t s0

0 1

])
< rX,

One has, by the definition of rX, that ue−2t s0
= id, or in other words, s0 = 0. Here is a picture

5



6 1. DENSENESS OF HOROCYCLES

�

COROLLARY 2.2. Assume Γ is cocompact and take x ∈ X. There exist tn , sn →+∞ with |tn − sn | →∞ such that d(xn , yn) → 0, where
xn := utn .x and yn := usn .x

PROOF. The map t 7→ ut .x from R≥0 to X is injective. Since X is compact, we may apply pigeon-hole principle. �

3. Additional invariance

Now we start to prove the theorem. The crucial notion here is

DEFINITION 3.1. Let a (semi)group G act on a topological space W by homeomorphisms. A nonempty subset V of W is said to be
G-minimal iff it is closed, G-stable and contains no proper non-empty closed G-stable subset.

Let Y be a U-minimal set in the orbit closure U.x0. The existence of Y is guaranteed by the compactness of X and Zorn’s lemma.
Our strategy is to find some y ∈ Y and a larger group whose orbit based at y is contained in Y .

PROOF OF THEOREM 1.4. Keep notations as Coro.2.2 above. When n is large, we find some An ∈ SL2(R) with d(An , id) ≤ rX/4 such
that yn = An xn . Write

An =
[

1+an bn

cn 1+dn

]
with an ,bn ,cn ,dn → 0.

Coro.2.2 ensures that An is not an upper triangular unipotent matrix.
The key calculation is:

(1)

us An u−1
s =

[
1 s
0 1

][
1+an bn

cn 1+dn

][
1 −s
0 1

]
=

[
1 s
0 1

][
1+an bn − s(1+an)

cn 1+dn − scn

]
=

[
1+an + scn bn + s(dn −an)− s2cn

cn 1+dn − scn

]
.

Case I, cn = 0 for infinitely many n.
This case is left to you as an exercise.
Case II. cn 6= 0 for n large enough.
Equa.(1) above suggests that the upper right corner dominates when s is large (this is called “shearing phenomenon", we will

return to this point later).

We will kill the upper right corner according to the following computation

(2) ut (us An u−1
s ) =

[
1+an + (s + t )cn bn + s(dn −an)− s2cn + t (1+dn − scn)

cn 1+dn − scn

]
.

Define t = t (s) by imposing the following equality

(3)

bn + s(dn −an)− s2cn + t (1+dn − scn) = 0

⇐⇒ t =−bn + s(dn −an)− s2cn

dn − scn
=−bn − san − s

1+dn − scn
− s



4. A DUALITY ARGUMENT 7

The range of s for which the t (s) is ill-defined will be excluded from the discussion (see s = sn,δ below, where one has 1+dn −scn = 1±δ
with δ small). With this choice of t = t (s),

(4) ut (us An u−1
s ) =

[
(1+dn − scn)−1 0

cn 1+dn − scn

]
.

Now for δ> 0 (we will let δ→ 0 in a moment), choose s = sn,δ ≥ 0 such that either 1+dn−scn = 1+δ or 1−δ, depending on the signature
of cn . So

sn,δ =
dn −δ

cn
or

dn +δ
cn

,

whichever is positive.
Define

y ′
n,δ := ut (s)us .yn , x ′

n,δ := us .xn , where s = sn,δ.

Then by definition

(5)

y ′
n,δ = ut (s)us An u−1

s us .xn = ut (s)us An u−1
s .x ′

n,δ

=
[

(1±δ)−1 0
0 (1±δ)

]
.x ′

n,δ

Fix δ, let n vary. By passing to a subsequence nk , assume that y ′
n,δ and x ′

n,δ converge to y∞,δ and x∞,δ respectively. Hence

y ′
∞,δ =

[
(1+δ)−1 0

0 (1+δ)

]
· x ′

∞,δ or

[
(1−δ)−1 0

0 (1−δ)

]
· x ′

∞,δ.

Without loss of generality, assume that the first case happens for infinitely many δ> 0 converging to 0. It looks like we are not making
any progress except that the “transverse difference” is now in the direction of the diagonal, which normalizes U. So it is time to invoke
the following general fact, which is why we introduced the notion of minimal set.

LEMMA 3.2. Let Γæ Z by homeomorphisms. Γ is a semi-group and Z a topological space. Assume that V is a Γ-minimal set and W
is a Γ-invariant closed set. If φ ∈ Homeo(X ) normalizes (the image of) Γ and there exist v0 ∈V and w0 ∈W with φ(v0) = w0. Then φ(V )
is contained in W .

PROOF OF THE LEMMA.
φ(V ) =φ(Γ.v0) =φ(Γ.v0) = Γ.w0 ⊂W.

�

From the lemma (applied to V =W = Y , Z = X), we see that for a set of δ converging to 0 and for every y ∈ Y ,[
(1+δ)−1 0

0 (1+δ)

]
.Y ⊂ Y .

Since
{

g ∈ SL2(R)
∣∣ g Y ⊂ Y

}
is a closed sub-semigroup,

{at | t ≥ 0} .Y ⊂ Y .

is contained in Y for every y . By definition {us | s ≥ 0} .Y ⊂ Y . By minimality, actually {us | s ≥ 0} .Y = Y .
Fix some y ∈ Y , and take a limit point y ′ of at y as t →+∞. Then the orbit of the full group A.y ′ ⊂ Y =⇒ AU.y ′ ⊂ Y . Thus we are

done modulo Lem.4.1.
�

4. A duality argument

Let B+ := {at us }t ,s∈R = A ·U and B := {(±1)at us }t ,s∈R. B+ is the identity component of B and B = B+ t (−1)B+ where we have

abbreviated the matrix

[ −1 0
0 −1

]
as “−1".

LEMMA 4.1. The action of B+ on X is minimal.

REMARK 4.2. The lemma also holds when only assuming Γ to be discrete and of finite co-volume (referred to as a lattice). Actually,
the lemma follows iff the limit set for Γ is the full boundary, which includes some infinitely generated, infinite covolume examples.

PROOF. We are going to show that the B-action is minimal first and then explain why this is sufficient.
An equivalent formulation is that the Γ-action on SL2(R)/B is minimal. To prove this, we will take a geometric point of view.
Recall that SL2(R) acts on the upper half space H 2 := {z = x + i y | x ∈R, y > 0} by[

a b
c d

]
· z := az +b

cz +d
.

This action preserves the Riemannian metric (referred to as the hyperbolic metric)

(dx2+dy2)/y2.

Geodesics under the hyperbolic metrics are (Euclidean) circles perpendicular to the x-axis together with all the vertical lines.
Another important point is that as the y-coordinate approaches 0, the (hyperbolic) distance between two points of (Euclidean)

distance ³ 1 actually goes to ∞. The SL2(R)-action extends continuously to the “boundary” defined by

∂H 2 := {(x, y), y = 0}t {∞}.

where the topology near ∞ is defined as the “one-point compactification”. Thus topologically the boundary is a circle. The action at ∞
is given as follows [

a b
c d

]
·∞= a∞+b

c∞+d
=

{
a/c, if c 6= 0

∞, otherwise
.

Why care? Note that the stabilizer of ∞ is exactly B and the action is transitive on ∂H 2 (Exercise: convince yourself that this gives a
topological homeomorphism SL2(R)/B ∼=H 2) Thus it suffices to show that the action of Γ on ∂H 2 is minimal.

CLAIM 4.1. For every z ∈H 2, the orbit closure Γ · z ⊃ ∂H 2.
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Assuming the claim, let W be a closed Γ-invariant set on ∂H 2 ∼= S1. Thus its complement consists of disjoint union of open
intervals (labelled as Ii ’s). Take such an interval I0 with endpoints w1, w2. We argue that Γ · Ûw1w2 (the unique geodesic connecting w1

and w2) never contains I0 in its closure, which contradicts against the above claim. Indeed, Γ translates of Ûw1w2 are just geodesics
with endpoints outside the region between Ûw1w2 and I0.

Hence we are done.

PROOF OF CLAIM 4.1. By co-compactness, we can find a bounded region B ⊂H 2 (whose diameter under hyperbolic distance is
denoted by diam(B) ) such that Γ.B =H 2. For every z 6=∞ ∈ ∂H 2 (the case z =∞ is left to you) and a neighborhood Nz,r0 of radius r0

(in the Euclidean metric) of z, we are going to show that some γ ·B is contained in Nz,r0 . Indeed we can find γ ∈ Γ, b ∈ B such that
γb.z ∈Nz,r0/2. When r0 is sufficiently small one can show that for z ′ ∈H 2

dHyperbolic(z ′,γb.z) ≤ diam(B) =⇒ dEuclidean(z ′,γb.z) ≤ r0/2.

Applying this to z ′ = γ.z finishes the proof. �

Finally, as promised, we explain how to get the minimality of B+-action from that of B . So take x0 ∈ X and we know that

B.x0 = B+.x0 ∪B+(−1).x0 = X.

As B+x0 ∪B+(−1)x0 is B-invariant and closed, it is also equal to X. As X is connected (well, the group SL2(R) is connected), their
intersection B+x0 ∩B+(−1)x0 is non-empty. But this again, is a B-invariant closed set, so has to be the full X. In particular B+x0 = X .
And the proof completes. �

5. Exercises

EXERCISE 5.1. Let G := SL2(R) act continuously on a locally compact Hausdorff topological space X . Take x ∈ X , let Gx := {g ∈
g , g .x = x}. Assume G .x is closed, or is open in its closure, show that the bijection induced from g 7→ g .x

G/Gx →G .x

is a homeomorphism where G/Gx is equipped with the quotient topology and G .x is equipped with the subspace topology.

Hint: Baire’s Category theorem.

EXERCISE 5.2. Assume Γ is cocompact in SL2(R). Consider the standard action of SL2(R) on R2. Show that for every v 6=0 ∈ R2, Γ.v is
dense in R2.

EXERCISE 5.3. Show that SL2(R) does not admit any bi-invariant Riemannian metric.

5.1. A more geometric take on horocycles. I assume you have some familiarity with geometry on the upper half space in this
section.

Notations:

• H2 := {(x, y) ∈R2, y > 0} equipped with the metric dx2 +dy2

y2 and the left action of SL2(R) via fractional linear transformations;

• T 1(H2) is the unit tangent bundle ofH2;
• ∂H2 := {(x,0) ∈ R2, x ∈ R}t {∞} be the boundary of H2; The topology on {(x, y), x ∈ R, y ≥ 0} is the natural topology and the

topology onH2 :=H2 t∂H2 is the one-point compactification topology. The action of SL2(R) extends continuously toH2;
• Let Γ0 be a discrete subgroup of SL2(Z) such that Γ0\H2 is a closed surface of genus g ≥ 2;
• Let Γ′0 := [Γ0,Γ0], recall that Γ′0 is a normal subgroup of Γ0 and Γ0/Γ′0 ∼=Z2g ;

• For x ∈H2 and a discrete subgroup Γ of SL2(R), define the limit set Limitx (Γ) := Γ.x \Γ.x inH2.

EXERCISE 5.4. Limitx (Γ) ⊂ ∂H2 for every discrete subgroup Γ of SL2(R) and every x ∈H2.

EXERCISE 5.5. For every x, y ∈H2 and discrete subgroup Γ of SL2(R), Limitx (Γ) = Limity (Γ).

Thus the limit set is independent of the choice of base point and we henceforth denote it by Limit(Γ).

EXERCISE 5.6. Let Γ be a discrete subgroup of SL2(R). Show that Limit(Γ) is a Γ-minimal set.

(A Γ-set is said to be Γ-minimal iff either it is empty or for every x in this set, Γ.x is dense in this set. Actually Limit(Γ), if infinite, is
the unique nonempty Γ-minimal set)

Recall that for every geodesic Y (or closed convex subset) on H2 and every x ∈H2, there is a unique point, denoted as πY (x), in Y
such that

dist(x,Y ) = dist(x,πY (x)).

For every x ∈ T 1(H2), let x+ := limt→+∞ g t .x and x− := limt→−∞ g t .x where g t denotes the geodesic flow. Let Ûx−x+ be the unique

geodesic in T 1H2 connecting x− and x+. By abuse of notation we also let Ûx−x+ denote its projection to H2. Fix some point o ∈H2 (say,
take o = (0,1)), and x ∈ T 1H2, let t = to(x) be the unique real number such that

x = g t .πÛx−x+ (o).
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(a priori, πÛx−x+ (o) is just an element in H2 but we identify it with the unique element on Ûx−x+ ⊂ T 1H2 whose projection to H2 is
πÛx−x+ (o))

EXERCISE 5.7. The mapΦo : T 1H2 → (∂H2 ×∂H2 \∆∂H2)×R defined by

x 7→Φo(x) := (x−, x+, to(x))

is a homeomorphism.

This is the so-called Hopf coordinate.

EXERCISE 5.8. Check thatΦo(g t .x) = (x−, x+, to(x)+ t ).

EXERCISE 5.9. Check that for γ ∈ SL2(R),Φo(γ.x) = (γ.x−,γ.x+,∗) for some real number ∗.

Thus the orbits of Γ on T 1H2/{g t }t∈R corresponds to the orbits of Γ on ∂H2 ×∂H2 \∆∂H2.

EXERCISE 5.10. Let Γ be a discrete subgroup of SL2(R). Using the fact that g t -action on Γ\T 1H2 is not minimal, show that the action
of Γ on ∂H2 ×∂H2 \∆∂H2 is not minimal.

This action is still quite chaotic, at least when Γ is a lattice, but if we take one step further, it becomes totally discontinuous.
Let FAT∆ be the “fat diagonal” in ∂H2 ×∂H2 ×∂H2, i.e.

FAT∆ := {
(x1, x2, x3) ∈ (∂H2)3, xi = x j , ∃i 6= j

}
.

EXERCISE 5.11. Let Γ be a subgroup of SL2(R). Show that the diagonal Γ-action on (∂H2)3 \ FAT∆ is conjugate to the Γ-action onH2.

Now turn to the special Γ0, Γ′0 we defined. Recall in Lec 2 we have shown that Limit(Γ0) is the full ∂H2. Show that also

EXERCISE 5.12. Limit(Γ′0) = ∂H2.

(Hint: use Exer 5.5 and the fact that Γ′0 is a normal subgroup)

EXERCISE 5.13. Use this and the “thin” property of hyperbolic space to show that closed geodesics are dense in Γ′0\T 1H2.

(In Lec.3 we established denseness of closed geodesics on SL2(R)/SL2(Z) by constructing an explicit one and then considering
commensurable lattices)

For a point v on ∂H2 and x ∈ H2, let Hv (x) be the unique horocycle – the unique Euclidean circle tangent to ∂H2 at v( 6=∞) and
passing through x (when v =∞, Hv (x) is a horizontal line passing through x). We shall think of Hv (x) as a subset of T 1H2 by equipping
every point Hv (x) with the unique unit tangent vector that is orthogonal to Hv (x) and pointing towards v .

In Lec.2 we have shown that the projection of every horocycle is dense in Γ0\T 1H2. Here is a more geometric approach following
Hedlund’s paper.

EXERCISE 5.14. Show that for every nonempty open interval I ⊂ ∂H2 and x ∈H2, the set⋃
v∈I

Hv (x)

is dense in Γ′0\T 1H2.

(Hint: use Exer.5.13)

EXERCISE 5.15. Let v ∈ ∂H2, show that if there exists x ∈H2 such that Hv (x) is dense in Γ′0\T 1H2, then Hv (y) is dense in Γ′0\T 1H2

for every y ∈H2.

EXERCISE 5.16. The set of v such that Hv (x) is dense in Γ′0\T 1H2 is dense in ∂H2.

Let D be a Dirichlet fundamental domain for Γ′0. Accept the fact that if Γ′0 were finitely generated, then D would have only finitely
many sides.

EXERCISE 5.17. Show that Γ′0 is not finitely generated.

EXERCISE 5.18. Let v ∈ ∂H2 ∩D, then Hv (x) is not dense in Γ′0\T 1H2.

(Hint: without loss of generality assume v =∞, argue that, fixing a base point o, there is an upper bound for the y-coordinate of
γ.o as γ varies in Γ′0.)

Since Hv (x) is not compact in Γ′0\T 1H2, we have demonstrated an orbit of the horocycle flow that is neither dense nor compact.

EXERCISE 5.19. Take some y ∈ T 1H2 such that {g t .y} is compact in Γ0\T 1H2. Show that H y+ (x) is dense in Γ0\T 1H2.

(Hint: approximate some dense horocycle in T 1H2)

EXERCISE 5.20. Let v ∈ ∂H2 and fix some x ∈H2. Suppose the Euclidean radius of γ.Hv (x) can be arbitrarily large as γ varies in Γ0.
Then Hv (x) is dense in Γ0\T 1H2.

(When the horocycle is based at infinity, by saying the Euclidean radius is large, we mean that the horocycle could be very low)
(Hint: show that you can approximate every periodic geodesic)

EXERCISE 5.21. Show that indeed, since Γ0\T 1H2 is compact, that the Euclidean radius of γ.Hv (x) can be arbitrarily large as γ varies
in Γ0 for every pair v ∈ ∂H2 and x ∈H2.

(Hint: use the fact that the some (well, in the current case, every) geodesic stemming from v is bounded in Γ0\T 1H2)





CHAPTER 2

A dynamical reformulation of Oppenheim conjecture

Back to the Top.
We recommend the last chapter of [BM00] for an elementary account of the proof of Oppenheim conjecture. See [Mar97, LM14,

BGHM10] for history and more recent stories.

1. The statement

The goal of this and the next lecture is to prove a weak Oppenheim conjecture. In this lecture we will reduce the proof to a
dynamical statement whose proof is delegated to the next lecture. A stronger form will be treated later with the help of non-divergence
of unipotent flows.

THEOREM 1.1. Let Q be a non-degenerate indefinite quadratic from with real coefficients in N ≥ 3 variables. Assume that Q is not a
scalar multiple of some quadratic form with rational coefficients. Then the closure of Q(ZN \ 0) contains 0.

REMARK 1.2. This theorem says nothing nontrivial to the quadratic form Q1 = x y−p2z2 since Q1(1,0,0) = 0. However, it is nontrivial
for Q2 = x2 + y2 −p

2z2 since the value of Q2 at integral points can never be 0 unless (x, y, z) = (0,0,0).

Later we will specialize to the case when N = 3, from which the general case would follow. Details are left to the reader.

REMARK 1.3. Counter examples exist when N = 2. For instance consider the quadratic form Q(x1, x2) := (x1 −
p

2x2)x2. Note thatp
2 is badly approximable which means that there exists c > 0 such that {

p
2m} |m| ≥ c for all non-zero integer m where {·} stands for the

distance to the nearest integer. We will sketch a dynamical explanation below.

2. The space of lattices

For a quadratic form Q in N variables, define for k =R,Q,Z,

(6) SOQ (k) := {
g ∈ SLN (k)

∣∣Q ◦ g =Q
}

.

The definition makes sense for Q irrational. It might happen that SOQ (Z) is trivial. If MQ is the symmetric matrix representing of Q, i.e.
Q(v) = v tr MQ v (v written as a column vector), then

(7) SOQ (k) := {
g ∈ SLN (k)

∣∣g tr MQ g = MQ
}

.

One can compute the Lie algebra of SOQ (R) as

soQ = {
X ∈ sln(R)

∣∣MQ X +X tr MQ = 0
}

.

Where does it act on?

DEFINITION 2.1. A subgroupΛ of RN is said to be a (unimodular) lattice ifΛ is discrete and cocompact in RN (with Vol(RN /Λ) = 1).

Here Vol is taken with respect to the standard Euclidean metric on RN .

EXAMPLE 2.2. ZN is a unimodular lattice in RN .

EXAMPLE 2.3. Z[
p

2] may be viewed as a lattice in R4 by the geometric embedding, i.e.

Λ := {(x, y) |x, y ∈Z[
p

2], y =σ(x)}

where σ is the nontrivial element in Gal(Q(
p

2)/Q).

EXAMPLE 2.4. Z[
p−2] may be viewed as a lattice in R2 by identifying it with C, explicitly,

Λ= {(x,
p

2y) |x, y ∈Z}.

EXAMPLE 2.5. You can get a unimodular lattice starting from a lattice by multiplying a scalar.

Explicitly, for every discrete subgroup Λ of RN , one can find v1, ..., vn in RN that are R-linearly independent and Λ = Zv1 ⊕Zv2 ⊕
...⊕Zvn . Such a set {v1, ..., vn} will be called a basis of Λ. And n is called the rank of Λ. Λ is a lattice iff n = N . Conversely, given n
vectors v1, ..., vn that are R-linearly independent, the subgroup Zv1 + ...+Zvn is a discrete subgroup of RN .

11
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Assume a discrete subgroupΛ has rank N with basis (v1, ..., vN ). Then Vol(RN /Λ) = |det(v1, .., vN )| = ‖v1 ∧ ...∧ vN‖. This is because

{a1v1 + ...+aN vN |ai ∈ [0,1)}

forms a strict fundamental domain for RN /Λ, namely, it is in bijection with RN /Λ under the quotient map. Also, let us recall that

Vol(RN /Λ) = ‖v1‖ ·dist(v2,Rv1) ·dist(v3,Rv1 +Rv2) · ... ·dist(vN ,Rv1 + ...+RvN−1).

ThusΛ is a unimodular lattice iff det(v1, ..., vN ) =±1.
It is useful to be familiar with quotient constructions in Euclidean spaces. More precisely, an Euclidean space is a finite-dimensional

R-linear space together with a non-degenerate positive definite quadratic form (or an “inner product”, if you prefer). The “standard”
RN is nothing but the vector space RN together with the form Qstd (x1, ..., xN ) := x2

1 + ...+ x2
N . Once an Euclidean space is given, we can

talk about distance, volume...
If W is an R-subspace of RN , then we think of W as an Euclidean space by restricting the quadratic form to W . Since Qstd is

positive definite, its restriction to every subspace is also positive definite. Also, the quotientRN /W is equipped with a natural Euclidean
structure by identifying it with the orthogonal complement of W in RN . Alternatively, you can define the quotient metric on RN /W
and then argue that it comes from a quadratic form. These two methods give the same Euclidean structure on RN /W .

DEFINITION 2.6. Let XN be the set of unimodular lattices in RN equipped with the Chabauty topology.

Alternatively, one may think of XN as the set of all lattices of RN up to R∗-action.
A detailed treatment of Chabauty topology may be found in [BP92, Chapter E, Section 1]. For us, it suffices to know that under

the Chabauty topology, a sequence (Λn) ⊂ XN converges to Λ ∈ XN iff one can find a basis vn
1 , ..., vn

N of Λn such that as n →∞,
(
vn

i

)
n

converges to some v∞
i ∈RN for every i = 1, ..., N andΛ=⊕iZv∞

i .

Note that for a sequence (Λn) ⊂ XN , if there are bases
(
vn

1 , ..., vn
N

)
with

(
vn

i

)
n

converging to some v∞
i ∈ RN for every i , then(

v∞
1 , ..., v∞

N

)
are automatically R-linearly independent and they span a latticeΛwith covolume Vol(RN /Λ) = 1.

The space XN admits a natural action of SLN (R) and

LEMMA 2.7. The map g 7→ g .ZN from SLN (R) to XN descends to a homeomorphism SLN (R)/SLN (Z) ∼= XN.

PROOF. SLN (Z) is equal to the stabilizer of ZN in SLN (R), this proves the injectivity.
For every Λ ∈ XN , find a basis v1, ..., vN . Replacing v1 by −v1 if necessary, assume M := (v1, ..., vN ) (vi written as column vectors)

has determinant 1. Then M .ZN =Λ. This proves the surjectivity.
We leave it to the reader to convince himself/herself that the map is open and continuous. �

DEFINITION 2.8. For a discrete subgroupΛ≤RN we define

(8) sys(Λ) := inf
v 6=0∈Λ

‖v‖

where ‖·‖ is the standard Euclidean norm.

Clearly sys(Λ) > 0.
You may interpret sys(Λ) as the length of the smallest geodesic in the quotient flat torus RN /Λ.
One can check that sys : XN →R>0 is continuous.
The following is sometimes referred to as Mahler’s criterion.

LEMMA 2.9. 1. A set B ⊂ XN does not have compact closure (we will simply write unbounded later) if for every ε > 0 there
existsΛ ∈B with sys(Λ) ≤ ε.

2. For every ε> 0, the set {
Λ

∣∣ sys(Λ) ≥ ε}
is compact in XN .

DEFINITION 2.10. For a discrete subgroupΛ of RN , we let ‖Λ‖ := Vol(V /Λ) where V is the R-linear span ofΛ. For a latticeΛ of some
Euclidean space V , we let ‖Λ‖V := Vol(V /Λ).

As we have discussed, if v1, ..., vn is a basis ofΛ, then

‖Λ‖ = ‖v1‖ ·dist(v2,R.v1) · ... ·dist(vn ,Rv1 + ...+Rvn−1).

Let us also remark that dist(v2,Rv1) = ‖v2‖RN /Rv1
and more generally

dist(vk ,Rv1 + ...+Rvk−1) = ‖vk‖RN /(Rv1+...+Rvk−1) .

PROOF OF LEM.2.9. 1. follows from the continuity of sys. Let us prove 2.
Fix some ε> 0 and takeΛ ∈ XN satisfying sys(Λ) ≥ ε. It suffices to construct a basis ofΛwith bounded distance to the origin.
Consider the projection p :RN →RN /Λ. As Vol(RN /Λ) = 1, p restricted to the subset [−1,1]N is not injective. This shows that there

exists v 6=0 ∈Λ, ‖v‖ ≤C1(N ) for some positive constant C1(N ) depending only on N . In particular, if we choose v1 ∈Λ such that

‖v1‖ = sys(Λ),

then ‖v1‖ ≤C1(N ). Note that v1 is primitive in the sense that v1 is not an integral multiple of any vector inΛ other than ±v1.
Let π1 be the projection from RN to V1 := RN /Rv1. Since Λ1 := π1(Λ) has rank N −1 and spans V1, we have that Λ1 is discrete and

actually a lattice in V1.
Note that

1 =‖Λ‖ = ‖v1‖ ·dist(v2,Rv1) · ... ·dist(vN ,Rv1 + ...+RvN−1)

=‖v1‖ ·‖π1(v2)‖V1 ·dist(π1(v3),Rπ1(v2)) · ... ·dist(π1(vN ),Rπ1(v2)+ ...+Rπ1(vN−1))

=‖v1‖ ·‖Λ1‖V1 ≥ ε · ‖Λ1‖V1

=⇒ ‖Λ1‖V1 ≤ ε−1 =: C2(ε).

Now choose v2 ∈Λ\Rv1 such that
‖π1(v2)‖ = sysV1

(Λ1).

A similar argument as above shows that ‖π1(v2)‖ < C3(N ,ε). By modifying v2 by some integral multiple of v1, we assume that ‖v2‖ <
C3(N ,ε) =C3 with a possibly larger C3.
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Next we want to argue that sysV1
(Λ1) > c1(N ,ε) for some constant c1(N ,ε) > 0 (we will soon see that can take c1 = 0.4ε) depending

only on N ,ε.
Say we have a nonzero vector in Λ1 of length smaller than λ. Then its lift v ∈Λ has the property 0 < dist(v,Rv1) < λ. So if we write

v = x.v1 +w for some w orthogonal to v1 then ‖w‖ ≤λ. Let nx be the nearest integer to x, then v ′ := (x −nx )v1 +w ∈Λ has norm∥∥v ′∥∥≤ |x −nx |‖v1‖+λ≤ 0.5‖v1‖+λ
So if we had chosen λ= 0.4ε≤ 0.4sys(Λ), then

∥∥v ′∥∥≤ 0.9sys(Λ), which is a contradiction. Thus every non-zero vector in Λ1 has length
greater than 0.4ε.

Let π2 be the natural projection RN → RN /(Rv1 +Rv2) =: V2. By abuse of notation, also denote the natural projection V1 → V2 by
π2.

With similar arguments,Λ2 :=π2(Λ1) is a lattice in V2 and

‖Λ1‖V1 = ‖π1(v2)‖ ·‖Λ2‖V2 =⇒ ‖Λ2‖V2 ≤ c−1
1 ·C2 =: C4(N ,ε) =: C4.

With similar arguments, sysV2
(Λ2) > c2(N ,ε). So we can find v3, ... up to vN with bounded norms. And one can check that each step

you get a primitive subgroup ofΛ and {v1, ..., vN } forms a basis ofΛ. So we are done. �

DEFINITION 2.11. A primitive subgroup of Λ is a subgroup ∆ such that the Q-span (or equivalently, the R-span) of ∆ intersecting
withΛ gives back ∆.

The Z-span of two primitive subgroups may not be primitive. e.g., consider (1,1), (1,−1) in Z2, each of which is primitive, but they
span a index 2 subgroup of Z2, hence not primitive.

3. Values of a quadratic form and orbits of its symmetric group

Now comes the equivalent formulation of weak Oppenheim. For a rational quadratic form Q, this would imply that SOQ (Z) is not
cocompact in SOQ (R) if Q(v) = 0 admits a solution in v 6=0 ∈ ZN (in which case we say Q is isotropic over Q). When N ≥ 5, a rational
indefinite quadratic form is always isotropic overQ (see [O’M63, 63:19, 66:1])

LEMMA 3.1. For a non-degenerate quadratic form Q in N variables with real coefficients, the following two are equivalent:

1. the closure of Q(ZN \ 0) contains 0;
2. the orbit closure of SOQ (R) based at the identity coset is unbounded in XN. In other words, SOQ (R).ZN contains non-zero vectors

of arbitrarily small length.

PROOF OF 2 =⇒ 1. By assumption and Mahler’s criterion, there exists gn ∈ SOQ (R) and un( 6= 0) ∈ZN such that gn ·un tends to 0.
Hence

Q(un) =Q(gn ·un) → 0.

And we are done. �

REMARK 3.2. For the proof of Thm.1.1 this direction is sufficient. However we feel that it is conceptually better to do the converse,
too. Actually, this provides a different way of understanding why Thm.1.1 fails when N = 2 – it suffices to find a bounded, yet non-closed
orbit of the diagonal group A on SL2(R)/SL2(Z). And one can do this by constructing two closed orbits of A and a third orbit Ay such that
in the forward direction, Ay approximates one closed orbit and in the backward direction Ax approximates the other. This relies on the
fact that closed A-orbits are dense (for instance, one can find one by explicit construction and then consider all lattices commensurable
to it) and an argument with local coordinates in stable/unstable/flow direction.

Why is this sufficient? Note that if Q is an indefinite rational quadratic form in two variable, then either Q isQ-equivalent to Q0 = x y
or Q1 = x2 −by2 for some b > 0 and

p
b ∉Q. In the former case, the orbit of SOQ (R) based at the identity coset diverges (that is, the orbit

map is proper) and in the second case the orbit is compact, stabilizer of which comes from certain elements inQ(
p

b).

Now go back to the proof of 1 =⇒ 2 of Lem.3.1. We need the following fact.

LEMMA 3.3. For every r 6=0 ∈R, SOQ (R) acts transitively on the level set

Vr := {
v ∈RN ∣∣Q(v) = r

}
.

And for r = 0, there are at most 2-orbits of SOQ (R) on V0 \ {0}.

PROOF. By linear algebra, up to change of R-coordinate (i.e. up to GLN (R)), we may and do assume that Q takes the form

Q(x1, ..., xN ) = (x2
1 + ...+x2

s )− (x2
s+1 + ...+x2

s+t ) =: Q1(x1, ..., xs )−Q2(xs+1, ..., xs+t )

for some s+ t = N and s, t ∈Z≥0. When one of s, t is equal to 0, the form is definite and we assume that we already know how to handle
this case.

For x ∈RN , we write vx := (x1, ..., xs ) and wx := (xs+1, ..., xN ).
Now we fix r0 and if Vr0 is empty there is nothing to prove. So assume otherwise and take x0 ∈ Vr0 . Let r1 := Q1(vx0 ) and r2 :=

Q2(wx0 ). Thus by transitivity in the (positive) definite case, we can find ki ∈ SOQi (R) (i=1,2) such that

k1.vx0 = (
p

r1,0, ...,0)

k2.wx0 = (
p

r2,0, ...,0).

Let SO(x2
1−x2

s+1)(R) be embedded in SOQ (R) by leaving the rest of the coordinates unchanged. When r = r1−r2 6= 0, it acts on x2
1−x2

s+1 = r

transitively. The level sets are not connected, but the group SO(x y)(R) is also not! Both have 2 components.
As for the case r = 0, one can show that SO(x2

1−x2
s+1)(R) has two orbits on x2

1 −x2
s+1 = 0. �

Here is an illustration of the proof by pictures
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REMARK 3.4. Assume Q is indefinite non-degenerate. One can further show that when N ≥ 3, SOQ (R) acts on V0\0 transitively. When
N = 2, SOQ (R) acts on V0 \ 0 with exact two orbits.

PROOF OF 1 =⇒ 2. By assumption for every ε > 0 there exists uε 6=0 ∈ ZN such that |Q(uε)| ≤ ε. On the other hand, By the (proof
of) Lem.3.3, there exists non-zero u1

ε ,u2
ε ∈ SOQ (R).uε such that∥∥u1

ε

∥∥ ,
∥∥u2

ε

∥∥≤ θ(Q,ε) = θ
where θ tends to 0 (for a fix Q) as ε does so. Hence sys(gεZN ) ≤ θ and we see that SOQ (R) ·ZN is unbounded as ε→ 0 by Lem.2.9. �

Now we specialize to N = 3.
In light of Lem.3.1, to prove Thm.1.1, it is sufficient to show that SOQ (R) ·Z3 is unbounded. Find g0 ∈ SL3(R) such that Q ◦ g−1

0 is a
scalar multiple of Q0 = 2x1x3 −x2

2 . Then
SOQ0 = g0 SOQ g−1

0 .

So sufficient to show that SOQ0 (R)g0.Z3 is unbounded in X3, which will follow from

THEOREM 3.5. LetΛ ∈ X3 be such that SOQ0 (R).Λ is bounded, then SOQ0 (R).Λ is closed, and hence compact.

In some sense we cheated a little bit. Because we are going to use a trick on quadratic forms . And the true dynamical result we are
going to prove is (to be proved in the next lecture):

THEOREM 3.6. Let Λ ∈ X3 be such that SOQ0 (R).Λ is bounded, then either SOQ0 (R).Λ is closed and hence compact, or the closure of
SOQ0 (R).Λ contains a {vs }s≥0-orbit or a {vs }s≤0-orbit. where

vs := exp

s ·
 0 0 1

0 0
0

=
 1 0 s

1 0
1

 .

Note that {vs } is not contained in SOQ0 (R).

PROOF OF THM.3.5 ASSUMING THM.3.6. Say, we have a {vs }s≥0-orbit (the other case is similar) based atΛ′ for someΛ′ ∈ SOQ0 (R).Λ.
Write x = (x1, x2, x3) ∈Λ′ . Then

Q0(vs .x) =Q0(x1 + sx3, x2, x3) = (2x2
3)s + (2x1x3 −x2

2).

First we can find some x ∈Λ′ such that Q0(x) < 0 and x3 6= 0 (I leave it to you to convince yourself that this is possible). Then there is
some s (replace x1 by −x1 if necessary) with Q0(vs ·x) = 0. By Lem.3.1, this implies SOQ0 (R)vs ·Λ⊂ SOQ0 (R) ·Λ is unbounded. �

PROOF OF THM.1.1 ASSUMING THM.3.6. To prove Thm.1.1, by Lem.3.1, if SOQ0 (R)g0.Z3 is unbounded in X3 then we are done.
Now we assume otherwise. If SOQ0 (R)g0.Z3 is compact, or equivalently, SOQ (R).Z3 is compact, then by Lem.3.7 below, Q is proportional
to a rational quadratic form, contradiction. Thus we have a {vs }s≥0 (the other case s ≤ 0 is similar) orbit in the closure of SOQ0 (R)g0.Z3.
Repeat the argument above, we find s ∈ R such that Q0(vs .x) = 0 for some x ∈ g0Z

3. But vs .g0Z
3 is in the closure of SOQ0 (R)g0.Z3,

implying that we can find (vn) ⊂ g0Z
3, (gn) ⊂ SOQ0 (R) such that gn .vn → vs .x. Hence

Q0(vn) =Q0(gn vn) →Q0(vs .x) = 0.

Thus the closure of Q(Z3) =Q0(g0.Z3) contains 0. �

LEMMA 3.7. For a non-degenerate quadratic form Q, if SOQ (Z) is cocompact in SOQ (R), then Q is a multiple of a rational quadratic
form.

Note that if Q is NOT a multiple of a rational quadratic form, then for some non-zero coefficientsα,β of Q, one hasα/β ∉Q. Hence
there exists σ ∈ Aut(R/Q) such that σ(α/β) 6=α/β, in particular, σQ is not proportional to Q.

So it suffices to complete

Step 1. for every σ ∈ Aut(R/Q), show SOQ (R)◦ = SOσ(Q)(R)◦;
Step 2. for every pair Q1,Q2 of non-degenerate quadratic forms of the same rank, show SOQ1 (R)◦ = SOQ2 (R)◦ =⇒ Q1 =λQ2 for some

λ ∈R 6=0.

STEP 1. First note that
SOσ(Q)(R) =σ(SOQ (R)) ⊃ SOQ (Z).

Consider the linear representation

SL3(R) æ Sym := {
R−Symmetric matrices

}
, g .M := g M g tr ,

and the map (call it φ) g 7→ g .σ(Q) from SOQ (R) to Sym. Then φ factors through

SOQ (R)/SOQ (Z) → Sym

and hence has compact (and bounded) image. Now we need two facts

1. SOQ (R)◦ is generated (as closed subgroup, which follows by a Lie algebra calculation) by one-parameter unipotent flows
{ut := exput }t∈R (u is some nilpotent matrix in soQ (R));
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2. For every unipotent flow {ut } and M ∈ Sym, either {ut ·M } is unbounded or M is fixed by {ut }. (if you do not believe this, do
some explicit calculation with upper triangular unipotent flows)

But we already saw that SOQ (R).σ(Q) is bounded, thus SOQ (R)◦ fixes σ(Q). So SOQ (R)◦ is contained in SOσ(Q)(R). But they are both Lie
subgroups of SL3(R) of the same dimension, so we must have

SOQ (R)◦ = SOσ(Q)(R)◦.

�

STEP 2. By conjugation we assume Q1 =Q0 = 2x1x3 −2x2
2 . One can compute that soQ0 (R) contains (and is generated by) 1

0
−1

 ,

 0 1 0
0 1

0

 ,

 0
1 0
0 1 0


(note that they do not form an sl2-triple, you should multiply the first and the second, but not the third, by 2) and hence SOQ0 (R)
contains

(9) at :=
 e t

1
e−t

 , us :=
 1 s s2/2

1 s
1

 , u−
s :=

 1
s 1

s2/2 s 1

 .

Then a direct computation (at the level of Lie algebra is perhaps easier) shows that in order for soQ2 (R) to contain these elements, Q2

must be a scalar multiple of Q1 and we are done. �

4. Exercises

4.1. Non-commensurable lattices in SL2(R), I. We apply ideas in Lec.4 to a different example. Our ultimate goal is to show that
two cocompact lattices in SL2(R) is either commensurable or their product is dense in SL2(R), which will (hopefully) be achieved in the
next set of exercises.

Notations:

• G := SL2(R)×SL2(R), H :=∆(SL2(R)) and Γ is a cocompact lattice in G;
• g := Lie(G) and h := Lie(H);

• A :=
{([

e t 0
0 e−t

]
,

[
e t 0
0 e−t

])
, t ∈R

}
= {∆at , t ∈R};

• U :=
{([

1 t
0 1

]
,

[
1 t
0 1

])
, t ∈R

}
= {∆ut , t ∈R};

• V :=
{([

1 t
0 1

]
,

[
1 −t
0 1

])
, t ∈R

}
= {vt , t ∈R};

• V + := {vt , t ≥ 0}, V − := {vt , t ≤ 0};
• W := AUV , W + := AUV +, W − := AUV −.

EXERCISE 4.1. Show that W is a group and W +, W − are semigroups.

EXERCISE 4.2. Let
h⊥ := {(X ,−X ) |X ∈ sl2(R)} ⊂ g.

Show that g= h⊕h⊥ and this decomposition is preserved by Ad(H).

Now takeΛ0 ∈G/Γ such that H.Λ0 is not closed. Define Y0 := H.Λ0 and

O := {
y ∈ Y0

∣∣H.y is open in Y0
}

.

EXERCISE 4.3. Show that O 6= Y0.

Let Y1 be a nonempty U -minimal set in Y0 \O .

EXERCISE 4.4. Show that Y1 is not a closed U -orbit.

EXERCISE 4.5. Assume Y1 is not preserved by A. Show that Y0 contains a W -orbit.

(Hint: consider Aut(Y1).)

EXERCISE 4.6. Assume Y1 is preserved by A. Show that Y0 contains a W +-orbit or a W −-orbit.

(Hint: consider Map(Y0,Y1).)

4.2. Totally geodesic hyperbolic planes in H3, I. We apply ideas in Lec.4 to yet another example. Our ultimate goal (hopefully
achieved in the next set of exercises) is to show that the image of a totally geodesic immersion of a hyperbolic plane in a closed hyper-
bolic three manifold is either closed or dense.

Notations:

• G := SL2(C), H := SL2(R) and Γ is a cocompact lattice in G;
• g := Lie(G) and h := Lie(H);

• A :=
{[

e t 0
0 e−t

]
, t ∈R

}
= {at , t ∈R};

• U :=
{[

1 t
0 1

]
, t ∈R

}
= {ut , t ∈R};

• V :=
{[

1 i t
0 1

]
, t ∈R

}
= {vt , t ∈R};

• V + := {vt , t ≥ 0}, V − := {vt , t ≤ 0};
• W := AUV , W + := AUV +, W − := AUV −;

EXERCISE 4.7. Let h⊥ := {i ·X , X ∈ sl2(R)}. Show that g= h⊕h⊥. Moreover, this decomposition is preserved by the Ad(H)-action.

EXERCISE 4.8. Let H.Λ0 be a non-closed H-orbit in G/Γ. Show that Y0 := H.Λ0 contains a W + or a W −-orbit.





CHAPTER 3

Orbit closure of orthogonal groups in the space of lattices

Back to the Top.
Notations and assumptions.

• Q0(x1, x2, x3) = 2x1x3 −x2
2 ;

• H := SOQ0 (R) ≤ G := SL3(R), X3
∼= SL3(R)/SL3(Z);

• A :=
at :=

 e t 0 0
0 1 0
0 0 e−t

 ∣∣∣∣∣∣ t ∈R
, U :=

us :=
 1 s s2

0 1 s
0 0 1

 ∣∣∣∣∣∣ s ∈R
;

• V :=
vs :=

 1 0 s
0 1 0
0 0 1

 ∣∣∣∣∣∣ s ∈R
;

• u0 :=
 0 1 0

0 0 1
0 0 0

 , v0 :=
 0 0 1

0 0 0
0 0 0

;

• h is the Lie algebra of H and h⊥ denotes its orthogonal complement, see Sec.3.1 for explicit calculations;
• Fix some x0 ∈ X3 with H.x0 being bounded and non-closed. Write Y0 for the closure of H.x0.

See last lecture for the precise definition of h⊥.

1. Overview

In this lecture we prove Theorem 3.6 from Chapter 2.

THEOREM 1.1. Let Λ ∈ X3 be such that SOQ0 (R).Λ is bounded, then either SOQ0 (R).Λ is closed and hence compact, or the closure of
SOQ0 (R).Λ contains a {vs }s≥0-orbit or a {vs }s≤0-orbit.

By comparison, the ultimate knowledge regarding this is:

THEOREM 1.2. Every SOQ0 (R)-orbit in X3 is either closed or dense.

Outline of proof. Recall that from Chapter 1, we wish to obtain something nontrivial that preserve Y0 (or a minimal subset of Y0)
in the direction of the normalizer. The normalizer of H is basically H itself. We restrict our attention to an one-parameter unipotent
subgroup U of H, then we can start to apply the same argument as in Ch.1. Take a U-minimal subset Y1 of Y0. The possibility of having
a closed U orbit is excluded. Then by arguments as in Ch.1, we would have some additional elements preserving Y1 in the normalizer of
U. Under the current situation, two possibilities for these additional invariants exist. They could be contained in A or V (or in between).
So for our purpose we may assume that the U-minimal set is A-stable. And to treat this case, instead of considering those preserving
Y1, we consider the set of g ∈ G mapping Y0 to Y1. The lack of group structure here would cause us some difficulty, taken care of by A.

2. The proof

In this section we prove Thm.1.1.
Consider the following

O := {
y ∈ Y0

∣∣H · y is open in Y0
}

Thus O is an H-invariant open (possibly empty) subset of Y0, in other words, Y0 \O is an H-invariant compact set.

LEMMA 2.1. O 6= Y0 unless Y0 = H · x0.

PROOF. Otherwise each H-orbit is open, and hence closed in Y0. In particular H.x0 is closed. But Y0 is not closed, so here is a
contradiction. �

Eventually we would know O is empty, but this is what we can do at the moment.
Now take Y1 to be a nonempty U-minimal set in Y \O . There are three cases to consider

Case 1. Y1 is a compact U-orbit;
Case 2. Y1 does not fall in case 1 and Y1 is A-invariant ;
Case 3. Y1 does not fall in case 1 or 2.

Actually, case 1 is not an option since Y1 is bounded and hence has a lower bound on injectivity radius. So we are left with case 2
and 3.

Before we proceed, let us note that given x ∈ X3, for y close enough to x, there exists unique small hy ∈ h and small wy ∈ h⊥ such
that

y = exp(hy )exp(wy ).x.

2.1. Case 2. In this case, we are going to show that

vs≥0 or vs≤0 ⊂
{

g ∈ H
∣∣ g Y1 ⊂ Y0

}
,

which implies the conclusion of Thm.1.1.
Since Y1 ⊂ Y0 \O and by the definition of O , for every x ∈ Y1, there exists yn → x with yn ∈ Y0 and

yn = exp(hn)exp(wn)x

where hn ∈ h, wn ∈ h⊥ both converging to 0 and wn 6= 0. Replacing yn by exp(−hn)yn we assume hn = 0. The case when wn belongs to
Lie(V) for infinitely many n’s is easier and we assume this is not the case.

17
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LEMMA 2.2. Assume wn does not belong to Lie(V) for n large enough. For δ > 0 small enough and n large enough, there exists tn,δ

such that

1.
∥∥Ad(utn,δ ) ·wn

∥∥ ∈ [ δ
1010 ,1010δ] ;

2. every limit point of
(
Ad(utn,δ ) ·wn

)
lies in Lie(V).

See Sec.3.4 for the proof. Now assume the lemma and choose tn,δ as above. Define

xn,δ := utn,δ .x0, yn,δ := utn,δ .yn ,

then

yn,δ = exp
(
Ad(utn,δ ) ·wn

)
.xn,δ.

By passing to a subsequence depending on δ, we assume lim xn,δ = x∞,δ ∈ Y1, lim yn,δ = y∞,δ ∈ Y0 and limAd(utn,δ ) ·wn = sδv0 for some

|sδ| ∈ [ δ
1010 ,1010δ]. Hence

y∞,δ = exp(sδv0) .x∞,δ = vsδ .x∞,δ

with sδ→ 0 as δ does so. Thus

Y0 ⊃ Uvsδ .x∞,δ = vsδU.x∞,δ

=⇒ Y0 ⊃ vsδU.x∞,δ = vsδY1.

The closed set {
g ∈ H

∣∣g Y1 ⊂ Y0
}

is not necessarily a group. Hence we can not conclude the existence of a vR (or half of it) orbit inside Y0 immediately. This is where the
assumption that Y1 is A-invariant steps in. Indeed,

ve2t sδY1 = at vsδa−1
t Y1 = at vsδY1 ⊂ at Y0 = Y0, ∀t ∈R,

so depending on the sign of sδ,
{

g ∈ H
∣∣g Y1 ⊂ Y0

}
contains vs≥0 or vs≤0. We are done.

2.2. Case 3. In this case, we are going to show that

V ⊂ {
g ∈ H

∣∣ g Y1 = Y1
}

,

which implies the conclusion of Thm.1.1.
Take x ∈ Y1. Since U.x is not closed, we can find yn = exp(hn)exp(wn)x ∈ Y1 with hn ∈ h, wn ∈ h⊥, hn , wn → 0 and hn +wn ∉ Lie(U).

We can no longer assume hn = 0.

LEMMA 2.3. For δ> 0 small enough and n large enough, there exist tn,δ and sn,δ such that

usn,δ ·utn,δ exp(hn)exp(wn)u−1
tn,δ

= exp(hn,δ)exp(wn,δ),

for some hn,δ ∈ h, wn,δ ∈ h⊥ with

max
{∥∥hn,δ

∥∥ ,
∥∥wn,δ

∥∥} ∈ [
δ

10100 ,10100δ]

and every limit point of
(
hn,δ⊕wn,δ

)
lies in Lie(A)⊕Lie(V).

See Sec.3.8 for the proof. By passing to a subsequence, let

y∞,δ = lim y ′
n := limusn,δutn,δ .yn ;

x∞,δ = lim x ′
n := limutn,δ .x.

Also let h∞,δ⊕w∞,δ be a limit of
(
hn,δ⊕wn,δ

)
. Write gδ := exp(h∞,δ)exp(w∞,δ). Note that gδ normalizes U.

As in Chapter 1, we arrive at

y∞,δ = gδ.x∞,δ ∈ Y1, x∞,δ ∈ Y1.

Hence

gδY1 = gδU.x∞,δ = U.y∞,δ = Y1.

As {
g ∈ G

∣∣g Y1 = Y1
}

is a closed subgroup, if we write gδ = exp vδ with vδ→ 0 in Lie(AV), then there exists some v 6=0 ∈ Lie(AV) such that

exp(sv)Y1 = Y1, ∀s ∈R.

If v has non-trivial Lie(V)-component then we are done. Otherwise we go back to case 2. Hence the proof completes.

3. Proof of the two lemmas

The reader is encouraged to prove Lem.2.2 and 2.3 on his/her own since the proof presented here has simple ideas but messy
details.

Both h and h⊥ are invariant under the adjoint action of H, and hence can be considered separately. In matrix terms,

Ad(g ).M = g M g−1, ad(X ).M = X M −M X , exp(ad(X )) = Ad(exp(X )).

3.1. Computation of the Lie algebra.
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3.1.1. Lie algebra of the orthogonal group. By definition, writing M0 =
 0 0 1

0 −1 0
1 0 0

,

soQ0 =
{

X ∈ sl3
∣∣M0X +X tr M0 = 0

}
.

Write X = (xi j ), then we are solving 0 0 1
0 −1 0
1 0 0

 x11 x12 x13

x21 x22 x23

x31 x32 x33

+
 x11 x21 x31

x12 x22 x32

x13 x23 x33

 0 0 1
0 −1 0
1 0 0

= 0

⇐⇒
 x31 x32 x33

−x21 −x22 −x23

x11 x12 x13

+
 x31 −x21 x11

x32 −x22 x12

x33 −x23 x13

= 0

⇐⇒ x31 = x22 = x13 = 0, x32 = x21, x33 +x11 = 0, x23 = x12.

That is to say

soQ0 =


 x11 x12 0
x21 0 x12

0 x21 −x11

 .

3.1.2. Computation of its complement. The notation so⊥Q0
below is justified by the fact that it is indeed the orthogonal complement

of soQ0 in sl3 with respect to the killing form (Exercise: check this).

so⊥Q0
= {

X ∈ sl3
∣∣M0X −X tr M0 = 0

}
.

Write X = (xi j ), then we are solving x11 x12 x13

x21 x22 x23

x31 x32 x33

 0 0 1
0 −1 0
1 0 0

−
 x11 x21 x31

x12 x22 x32

x13 x23 x33

 0 0 1
0 −1 0
1 0 0

= 0

⇐⇒
 x31 x32 x33

−x21 −x22 −x23

x11 x12 x13

=
 x31 −x21 x11

x32 −x22 x12

x33 −x23 x13


⇐⇒ x32 =−x21, x11 = x33 and x23 =−x12.

That is to say

so⊥Q0
=


 x11 x12 x13

x21 −2x11 −x12

x31 −x21 x11

 .

3.2. Computation, conjugacy by unipotents. Take w = (wi j ) ∈ h⊥, note that

Ad(us ) ·w = exp(s ad(u0)) ·w = w + s ·ad(u0)w + s2

2
ad(u0)2w + s3

3!
ad(u0)3w + s4

4!
ad(u0)4w

where the higher order terms vanish.
Write

w =
 w11 w12 w13

w21 −2w11 −w12

w31 −w21 w11


=w31 ·

 0 0 0
0 0 0
1 0 0

+w21

 0 0 0
1 0 0
0 −1 0

+w11

 1 0 0
0 −2 0
0 0 1


+ −w12

3

 0 −3 0
0 0 3
0 0 0

+ w13

6

 0 0 6
0 0 0
0 0 0


The reason why we write it in this form is that 0 0 0

0 0 0
1 0 0

  0 0 0
1 0 0
0 −1 0

  1 0 0
0 −2 0
0 0 1

  0 −3 0
0 0 3
0 0 0


 0 0 6

0 0 0
0 0 0



adu0 adu0 adu0

adu0

Using this, one can compute that

(10)

Ad(ut )w = t 2

2 w31 + t w21 +w11
t 3

3! w31 + t 2

2 w21 + t w11 + −w12
3

t 4

4! w31 + t 3

3! w21 + t 2

2 w11 + t −w12
3 + w13

6
t w31 +w21 ∗ ∗

w31 ∗ ∗


where the terms marked as ∗ are determined by the others, since the matrix is an element in h⊥.
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3.3. Linear independence of characters. Intuitively, one sees that the upper right corner of Equa.(10) should dominate the rest.
To turn this intuition into a solid statement is not so direct due to the possible cancellations between different monomials. By modify-
ing the value of t , though, we can avoid this. For simplicity let

(11) δt := max

{∣∣∣∣ t 4

4!
w31

∣∣∣∣ ,

∣∣∣∣ t 3

3!
w21

∣∣∣∣ ,

∣∣∣∣ t 2

2
w11

∣∣∣∣ ,
∣∣∣t −w12

3

∣∣∣ ,
∣∣∣ w13

6

∣∣∣} .

Let ‖·‖sup denote the maximal value of the absolute values of entries of a matrix, then

(12) ‖Ad(ut ).w‖sup ≤ 5δ.

For simplicity write

pw (t ) := t 4

4!
w31 + t 3

3!
w21 + t 2

2
w11 + t

−w12

3
+ w13

6
.

LEMMA 3.1. For t ≥ 1, we have that

max
{∣∣pw (t )

∣∣ ,
∣∣pw (2t )

∣∣ ,
∣∣pw (3t )

∣∣ ,
∣∣pw (4t )

∣∣ ,
∣∣pw (5t )

∣∣}≥ δt

1010 .

To prove this lemma, consider the matrix

M0 :=


1 1 1 1 1

24 23 22 2 1
34 33 32 3 1
44 43 42 4 1
54 53 52 5 1

 .

LEMMA 3.2. det(M0) = 4!3!2! 6= 0, and coefficients of M−1
0 satisfy

|(M−1
0 )i j | ≤ 4!5443322

4!3!2!
≤ 109

for every i , j .

PROOF. M0 is a Vandermonde matrix. Details left as an exercise. �

PROOF OF LEMMA 3.1. 
pw (t )

pw (2t )
pw (3t )
pw (4t )
pw (5t )

=


1 1 1 1 1

24 23 22 2 1
34 33 32 3 1
44 43 42 4 1
54 53 52 5 1

 ·


t 4

4! w31
t 3

3! w21
t 2

2 w11−w12
3

w13
6


And

δ=

∥∥∥∥∥∥∥∥∥∥∥∥


t 4

4! w31
t 3

3! w21
t 2

2 w11−w12
3

w13
6



∥∥∥∥∥∥∥∥∥∥∥∥
sup

=

∥∥∥∥∥∥∥∥∥∥
M−1

0 ·


pw (t )

pw (2t )
pw (3t )
pw (4t )
pw (5t )


∥∥∥∥∥∥∥∥∥∥

sup

≤ 5
∥∥M−1

0

∥∥
sup ·

∥∥∥∥∥∥∥∥∥∥


pw (t )

pw (2t )
pw (3t )
pw (4t )
pw (5t )


∥∥∥∥∥∥∥∥∥∥

sup

Hence ∥∥∥∥∥∥∥∥∥∥


pw (t )

pw (2t )
pw (3t )
pw (4t )
pw (5t )


∥∥∥∥∥∥∥∥∥∥

sup

≥ δ

5
∥∥M−1

0

∥∥
sup

≥ δ

1010 .

�

3.4. Proof of Lemma 2.2. Let wi j (n) be the (i , j )-th coefficient of wn . Let δ> 0, for n large, we can find t ∈R such that

(13) δ := max

{∣∣∣∣ t 4

4!
w31(n)

∣∣∣∣ ,

∣∣∣∣ t 3

3!
w21(n)

∣∣∣∣ ,

∣∣∣∣ t 2

2
w11(n)

∣∣∣∣ ,

∣∣∣∣t −w12(n)

3

∣∣∣∣ ,

∣∣∣∣ w13(n)

6

∣∣∣∣} ,

namely, Equa.(11) holds with δt = δ and wi j = wi j (n). Let tn,δ ∈ {t ,2t , ...,5t } such that the maximum in Lem.3.1 is attained. By Lem.3.1,∥∥Adutn,δ .wn
∥∥

sup
≥ δ

1010 .

Also note that as n →∞, tn,δ necessarily goes to +∞. Equa.(12) says that∥∥Adutn,δ .wn
∥∥

sup
≤ 5δ.

From Equa.(10), one sees that for (i , j ) 6= (1,3), ∣∣∣(Adutn,δ .wn
)

i , j

∣∣∣≤ 4!δ

tn,δ
,

which shows that as n goes to the infinity, only
(
Adutn,δ .wn

)
1,3

survives. Now the proof is complete.

3.5. From SL2 to SO(Q). In this subsection, we provide an explicit morphism from SL2(R) to SOQ0 (R).
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3.5.1. sl2(R) as a quadratic space. Note that SL2(R) acts on

sl2(R) = {2×2 trace zero matrices}

via the adjoint representation. And this action preserves the symmetric bilinear form

−Tr : (X ,Y ) 7→ −Tr(X ·Y ).

To identify sl2(R) with R3, consider the basis

E1 =
[

0 1
0 0

]
, E2 = 1p

2

[
1 0
0 −1

]
, E3 =

[
0 0
−1 0

]
.

And we fix an isomorphism R3 ∼= sl2(R) by sending ei to Ei where (e1,e2,e3) is the standard basis of R3.
Then one can check that (−Tr(Ei ·E j )

)
i , j =

 0 0 1
0 −1 0
1 0 0

 ,

which means that −Tr is identified with Q0 under the fixed isomorphism.
3.5.2. adjoint action of sl2 in basis. Denote by ρ : SL2(R) → SOQ0 (R) the morphism obtained by the above identification of sl2(R) ∼=

R3. Let us compute dρ : sl2(R) → soQ0 (R).
Let

X =
[

a b
c −a

]
∈ sl2(R).

Then

ad(X )E1 =
[

a b
c −a

][
0 1
0 0

]
−

[
0 1
0 0

][
a b
c −a

]
=

[
0 a
0 c

]
−

[
c −a
0 0

]
=

[ −c 2a
0 c

]
= 2aE1 + (−p2c)E2 +0E3,

ad(X )E2 = 1p
2

[
a b
c −a

][
1 0
0 −1

]
− 1p

2

[
1 0
0 −1

][
a b
c −a

]
= 1p

2

[
a −b
c a

]
− 1p

2

[
a b
−c a

]
=

[
0 −p2bp
2c 0

]
= (−p2b)E1 +0E2 + (−p2c)E3

and

ad(X )E3 =
[

a b
c −a

][
0 0
−1 0

]
−

[
0 0
−1 0

][
a b
c −a

]
=

[ −b 0
a 0

]
−

[
0 0
−a −b

]
=

[ −b 0
2a b

]
= 0E1 + (−p2b)E2 + (−2a)E3

Hence we have that

dρ :

[
a b
c −a

]
7→

 2a −p2b 0
−p2c 0 −p2b

0 −p2c −2a

 .

Sanity check: RHS is indeed a matrix in soQ0 (R).

3.6. Image of a unipotent flow. Let

u′
s =

[
1 s
0 1

]
.

Then

ρ(u′
s ) = exp

(
dρ

[
0 s
0 0

])
= exp

 0 −p2s 0
0 0 −p2s
0 0 0

= u−p2s

3.7. Exponential of a lower triangular matrix. Say we have

exp

[
x 0
y −x

]
=

[
(1+a)−1 0

b (1+a)

]
,

we would like to express x, y in terms of a,b.
Indeed, by definition of exp,

LHS =
[

1 0
0 1

]
+

[
x 0
y −x

]
+ 1

2

[
x 0
y −x

]2

+ 1

3!

[
x 0
y −x

]3

+ ...

So we should compute the powers of this matrix first.[
x 0
y −x

]2

=
[

x2 0
0 (−x)2

]
=⇒

[
x 0
y −x

]2n

=
[

x2n 0
0 (−x)2n

]
.

And odd powers are [
x 0
y −x

]2n+1

=
[

x2n+1 0
y x2n (−x)2n+1

]
.

Thus

exp

[
x 0
y −x

]
=

[
ex 0

y
(

ex−e−x

2x

)
e−x

]
=

[
(1+a)−1 0

b (1+a)

]
.

And thus

(14) x = ln(1+a), y = b

(
2ln(1+a)

(1+a)− (1+a)−1

)
.

The equality for y is not needed. Also note that for |a| < 1

(15) |ln(1+a)−a| ≤ 2|a|2
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and that if (an) is a sequence contained in some fixed compact sub-interval of (−1,+∞) and (bn) is a sequence converging to 0 then
the corresponding (yn) should converge to 0.

3.8. Proof of Lemma 2.3. For convenience, let us repeat Lem.2.3.

LEMMA 3.3. For δ> 0 small enough and n large enough, there exist tn,δ and sn,δ such that

(16) usn,δ ·utn,δ exp(hn)exp(wn)u−1
tn,δ

= exp(hn,δ)exp(wn,δ),

for some hn,δ ∈ h, wn,δ ∈ h⊥ with

(17) max
{∥∥hn,δ

∥∥ ,
∥∥wn,δ

∥∥} ∈ [
δ

10100 ,10100δ]

and every limit point of
(
hn,δ⊕wn,δ

)
lies in Lie(A)⊕Lie(V).

PROOF. Define h′
n := dρ−1(hn). Write

exp(h′
n) =

[
1+an bn

cn 1+dn

]
.

For s, t ∈R, write s′ := s/(−p2), t ′ = t/(−p2). Hence ρ(u′
s′ ) = us and ρ(u′

t ′ ) = ut .
Choose sn,δ depending on tn,δ (to be determined later) such that

(18) u′
s′n,δ

u′
t ′n,δ

exp(h′
n)(u′

t ′n,δ
)−1 =

[
(1+dn − t ′n,δcn)−1 0

cn 1+dn − t ′n,δcn

]
.

See Chapter 1 for details. Define h′
n,δ by

(19) exp
(
h′

n,δ

)
=

[
(1+dn − t ′n,δcn)−1 0

cn 1+dn − t ′n,δcn

]
.

Write wn = (wi j (n)). Choose t such that

δ= max

{∣∣dn − t ′cn
∣∣ ,

∣∣∣∣ t 4

4!
w31(n)

∣∣∣∣ ,

∣∣∣∣ t 3

3!
w21(n)

∣∣∣∣ ,

∣∣∣∣ t 2

2
w11(n)

∣∣∣∣ ,

∣∣∣∣t −w12(n)

3

∣∣∣∣ ,

∣∣∣∣ w13(n)

6

∣∣∣∣} .

Also let

δ′ := max

{∣∣∣∣ t 4

4!
w31(n)

∣∣∣∣ ,

∣∣∣∣ t 3

3!
w21(n)

∣∣∣∣ ,

∣∣∣∣ t 2

2
w11(n)

∣∣∣∣ ,

∣∣∣∣t −w12(n)

3

∣∣∣∣ ,

∣∣∣∣ w13(n)

6

∣∣∣∣} .

We choose tn,δ from t ,2t , ...,5t such that the maximum in Lem.3.1 is attained (with δt replaced by δ′).
Define hn,δ := dρ(h′

n,δ) and

wn,δ := Ad(utn,δ ).wn .

Now everything is defined and it remains to check the conclusion of Lem.2.3.
First one can verify Equa.(16). By Equa.(18) and (19),

u′
s′n,δ

u′
t ′n,δ

exp(h′
n)(u′

t ′n,δ
)−1 = exp

(
h′

n,δ

)
(apply ρ) =⇒ usn,δutn,δ exp(hn)u−1

tn,δ
= exp

(
hn,δ

)
=⇒ usn,δutn,δ exp(hn)exp(wn)u−1

tn,δ

= exp
(
hn,δ

)
exp

(
Ad(utn,δ ).wn

)= exp
(
hn,δ

)
exp

(
wn,δ

)
.

That hn,δ ∈ h, wn,δ ∈ h⊥ follows from their definition. It remains to verify Equa.(17) and that every limit of (hn,δ) is in Lie(A), every
limit of (wn,δ) is in Lie(V).

By the discussion below Equa.(15) and that cn → 0, we find∣∣∣(h′
n,δ

)
2,1

∣∣∣→ 0.

Thus every limit of (hn,δ) is in Lie(A). That every limit of (wn,δ) is in Lie(V) follows from the proof of Lem.2.2.
For n sufficiently large such that |dn | ≤ δ,∣∣∣dn − t ′n,δcn

∣∣∣≤ |dn |+5|t ′cn | ≤ 6|dn |+5|dn − t ′cn | ≤ 11δ.

Combined with Equa.(15) we see that (assume δ≤ 1)∣∣∣(h′
n,δ

)
2,2

∣∣∣≤ ∣∣∣dn − t ′n,δcn

∣∣∣+2
∣∣∣dn − t ′n,δcn

∣∣∣2 = 11δ+2 ·112δ2 ≤ 300δ.

This shows that ∥∥hn,δ
∥∥≤ 10100δ.

If δ= δ′, then the remaining conclusions follow from the proof of Lem.2.2.
If δ> δ′, then δ= ∣∣dn − t ′cn

∣∣. For n large enough such that |dn | ≤ 0.1δ,∣∣∣dn − t ′n,δcn

∣∣∣≥ ∣∣∣t ′n,δcn

∣∣∣−|dn | ≥
∣∣t ′cn

∣∣−|dn | ≥
∣∣dn − t ′cn

∣∣−2 |dn | ≥ 0.8δ.

Now by Equa.(15), ∣∣∣(h′
n,δ

)
2,2

∣∣∣≥ ∣∣∣dn − t ′n,δcn

∣∣∣−2
∣∣∣dn − t ′n,δcn

∣∣∣2 ≥ 0.8δ−2 · (11)2δ2.

If δ is sufficiently small such that 2 · (11)2δ≤ 0.1, then∣∣∣(h′
n,δ

)
2,2

∣∣∣≥ 0.5δ =⇒ ∥∥hn,δ
∥∥≥ 0.5δ.

Again, the rest of the claim follows by arguments in Lem.2.2.
Now we are done. �
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4. Exercises

4.1. orbits of diagonal groups. We say that a matrix g ∈ SL2(R) is R-diagonalizable iff there exists h ∈ SL2(R) such that hg h−1 is
a diagonal matrix. Note that for a matrix X 6=± id ∈ SL2(R), being R-diagonalizable is equivalent to being hyperbolic in the sense that
Tr(X ) > 2. Fix a discrete subgroup Γ of SL2(R), an R-diagonalizable matrix γ ∈ Γ is said to be primitive iff it can not be written as (γ′)n

for some n ∈Z, n 6= ±1 and some other γ′ ∈ Γ that is R-diagonalizable. By definition ± id is never primitive. Let

Prim(Γ) := {
γ is R-diagonalizable and primitive

}
.

EXERCISE 4.1. Assume Γ≤ SL2(R) is a discrete subgroup containing {± id}. Find a bijection between{
compact {at }-orbits

}∼= Prim(Γ)/ ∼Γ
where ∼Γ is the equivalence relation defined by g ∼Γ h iff g = γhγ−1 for some γ ∈ Γ.

EXERCISE 4.2. Classify all compact {at }t∈R-orbits on SL2(R)/SL2(Z).

EXERCISE 4.3. Classify all divergent {at }t∈R-orbits on SL2(R)/SL2(Z).

Recall that an orbit {at .x} is said to be divergent iff for every compact set in C ⊂ SL2(R)/SL2(Z) there exists t0 > 0 such that for all
|t | > t0, we have at .x ∉C .





CHAPTER 4

Nondivergence of unipotent flows on X2

Back to the Top.
The main reference for this chapter is Kleinbock’s Clay notes [Kle10].
Notation:

• U :=
{

us :=
[

1 s
0 1

] ∣∣∣∣ s ∈R
}

, A :=
{

at :=
[

e t 0
0 e−t

] ∣∣∣∣ t ∈R
}

;

•
• X2 =

{
unimodular lattices in R2

}

1. Summary

DEFINITION 1.1. For ε> 0, define

Cε := {
Λ ∈ X2

∣∣sys(Λ) ≥ ε} .

By Lem.2.9 from Ch.2 (Mahler’s criterion), Cε is a compact set and every compact set in X2 is contained in Cε for some ε> 0.

THEOREM 1.2. [Uniform non-divergence of unipotent flows for X2] For every compact set K ⊂ X2 and ε ∈ (0,1), there exists δ =
δ(K ,ε) > 0 such that the following holds. For every interval (a,b) with a < b in R and Λ ∈ X2 satisfying us0 .Λ ∈ K for some s0 ∈ (a,b), we
have that

1

b −a
Leb{s ∈ (a,b) |us .Λ ∉Cδ} ≤ ε.

Actually the choice of δ is also independent of the unipotent flow we use — you may replace us everywhere by its conjugates.

THEOREM 1.3. If ε ≤ 1 and Λ ∈ X2 are such that us .Λ ∉ Cε for every s in some interval of infinite length (i.e., something like
(a,+∞), (−∞,b), (−∞,+∞)), thenΛ contains a horizontal vector of length less than ε. That is to say, (v1,0) ∈Λ for some 0 < |v1| < ε.

COROLLARY 1.4. For every two x1, x2 with compact U-orbits, there exists u ∈ U and a ∈ A such that x2 = au.x1.

The reader might have noticed that the converse also holds since U -action fixes the horizontal direction. Also note that such U -
orbits are closed and compact. In this case, one may think of U -action onΛ as “Dehn-twist” along the closed geodesic represented by
(v1,0) ∈Λ∼=π1(R2/Λ) .

Here is a compact U-orbit U.Z2:

2. The proof

LEMMA 2.1. There exist C1 > 0 and α1 > 0 such that for every interval (a,b) in R, every v = (v1, v2) ∈R2 and every ρ ∈ (0,1), we have

1

b −a
Leb

{
s ∈ (a,b)

∣∣‖us .v‖ < ρM0
}≤C1ρ

α1 .

where M0 := sups∈(a,b) ‖us .v‖.

PROOF. Take C1 = 2
p

2 and α1 = 1.
Note us .(v1, v2) = (v1 + sv2, v2).
If |v2| ≥ 1p

2
M0 then for every s ∈ (a,b), ‖us .v‖ ≥ |v2| ≥ 1p

2
M0. So if ρ ≤ 1p

2
, then we are already done. Otherwise, C1ρ

α1 ≥ 1. Also ok.

So now we are left with the case when |v1 + s0v2| ≥ 1p
2

M0 for some s0 ∈ (a,b). Refer to the picture below, we see that

1

b −a
Leb

{
s ∈ (a,b)

∣∣ |v1 + sv2| < ρM0
}≤ 2

ρ

1/
p

2
=C1ρ.

It remains only to note that |v1 + sv2| < ‖us .(v1, v2)‖. �

25
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To go from this Lemma to Thm.1.2 or 1.3, we need
Key observation. A rank 2 unimodular lattice Λ ∈ X2 is not allowed to contain two linearly independent vector of length strictly

smaller than 1. For otherwise, if v, w is such a pair,

‖Λ‖ ≤ ‖Zv ⊕Zw‖ ≤ ‖v‖‖w‖ < 1,

contradicting against the assumption thatΛ is unimodular.

Let

Prim(Λ) := {
v 6=0 ∈Λ

∣∣R.v ∩Λ=Z.v
}

be the set of primitive vectors.

PROOF OF THM.1.2. Find δ0 ∈ (0,1) such that K ⊂Cδ0 . We shall determine δ later, depending on δ0 and ε.
Take s0 ∈ (a,b) such that us0 .Λ0 ∈ K ⊂Cδ0 . Let

I (Λ0,δ0) := {
s ∈ (a,b)

∣∣sys(us .Λ0) < δ0
}

which decomposes into a disjoint union of open intervals

I (Λ0,ε0) = ⊔
α∈A

Iα

with certain index set A .

Take one Iα = (xα, yα). By the remark right before the proof, for s ∈ Iα, there exists a unique vs (up to ±1) in Prim(Λ0) with

‖us .vs‖ < δ0.

By connectedness, this vs has to be independent of s ∈ Iα. For this reason denote it by vα. By Lem.3.1 and the assumption that
us0 .Λ0 ∈Cδ0 ,

1

|Iα|
Leb

{
s ∈ Iα

∣∣‖us .vα‖ < ρδ0
}<C1ρ

α1 .

We take ρ = ρ(ε) such that C1ρ
α1 < ε. Let δ := ρδ0.

{s ∈ (a,b) |‖us .vα‖ < δ} = ⊔
α∈A

{
s ∈ Iα

∣∣‖us .vα‖ < ρδ0
}

implying

Leb{s ∈ (a,b) |‖us .vα‖ < δ} =
∑
α∈A

Leb
{

s ∈ Iα
∣∣‖us .vα‖ < ρδ0

}< ∑
α∈A

|Iα| ·ε≤ (b −a)ε.

�

PROOF OF LEM.1.3 . Let I be this infinite interval. Since for each s ∈ I there exists a unique (up to ±1) vs in Prim(Λ) with ‖us .vs‖ <
1. By connectedness argument, this v = vs is independent of s ∈ I . Thus ‖us .v‖ < 1 for all s ∈ I . But coordinates of us .v are polynomials
in s, being bounded then implies that us .v is constant. Therefore U fixes v and we are done. �
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3. Exercises

3.1. Nondivergence in rank 1, a number field example. In these set of exercises, it is more convenient to write R4 as R2 ⊕R2.

EXERCISE 3.1. Show that Z[
p

2] is a principal ideal domain.

Thus every torsion free (finitely generated) Z[
p

2]-module is free.
Fix an embedding ofQ(

p
2) in R. Let σ be the other embedding ofQ(

p
2) in R. Consider the action ofQ(

p
2) on R2 ⊕R2 given by

x.(v, w) := (x.v,σ(x).w).

EXERCISE 3.2. This is a linear action. Write down the matrix representation of this action. Namely, for every x = a +b
p

2 ∈Q(
p

2),
write down a 4-by-4 matrix representing the action of x on R2 ⊕R2 with respect to the standard basis.

Let ∆ be a rank-1 Z[
p

2]-submodule in R2 ⊕R2. We may write ∆=Z[
p

2].(v, w). Let ‖∆‖ := ‖v‖ ·‖w‖.

EXERCISE 3.3. Show that ‖∆‖ is independent of the choice of generator for the Z[
p

2]-module ∆.

Define
X′

4(Z[
p

2]) :=
{
Λ≤R2 ⊕R2 lattice ,Λ is preserved by Z[

p
2]

}
.

EXERCISE 3.4. Show that such a lattice is a rank-2 Z[
p

2]-module.

Thus for Λ ∈ X′
4(Z[

p
2]), we can find a Z[

p
2]-basis (v1, w1) and (v2, w2) in R2 ⊕R2. Define ‖Λ‖ := ‖v1 ∧ v2‖ · ‖w1 ∧w2‖. Define

det(Λ) := (v1 ∧ v2, w1 ∧w2) ∈ (R⊕R)/Z[
p

2]×. Here Z[
p

2]× denotes the invertible elements in this ring Z[
p

2].

EXERCISE 3.5. Show that indeed, the value of det(Λ) in (R⊕R)/Z[
p

2]× is independent of the choice of bases. Thus ‖Λ‖ is also
independent of the choice of bases.

EXERCISE 3.6. Find the relation between this newly defined ‖Λ‖ and the old ‖Λ‖Old defined as the volume of R4/Λ.

Define
X4(Z[

p
2]) :=

{
Λ ∈ X′

4(Z[
p

2])
∣∣∣detΛ= 1

}
.

Here “1” is the image of (1,1) in (R⊕R)/Z[
p

2]×. Equip X4(Z[
p

2]) with the Chabauty topology, viewing it as a collection of closed
subgroups of R2 ⊕R2.

EXERCISE 3.7. Show that the free Z[
p

2]-module with basis {(e1,e1), (e2,e2)} (denote this module as Λ0) belongs to X4(Z[
p

2]) and
that g 7→ g .Λ0 induces a homeomorphism

SL2(R)×SL2(R)/SL2(Z[
p

2]) ∼= X4(Z[
p

2]).

ForΛ ∈ X4(Z[
p

2]), define
sysZ[

p
2](Λ) := inf

∆≤Λ
‖∆‖

where ∆ varies over all rank-1 Z[
p

2]-submodule ofΛ. For every ε> 0, let

Cε :=
{
Λ ∈ X4(Z[

p
2])

∣∣∣sysZ[
p

2](Λ) ≥ ε
}

.

EXERCISE 3.8. For every ε> 0, Cε is a compact subset of X4(Z[
p

2]).

EXERCISE 3.9. Conversely, every compact subset of X4(Z[
p

2]) is contained in Cε for some ε> 0.

EXERCISE 3.10. For ε> 0 small enough, for everyΛ ∈ X4(Z[
p

2]), the set

{(v, w) ∈Λ |‖v‖‖w‖ < ε}

is either {0} or generates a rank-1 Z[
p

2]-submodule ofΛ.

Let ut :=
([

1 t
0 1

]
,

[
1 t
0 1

])
and U := {ut , t ∈R}.

EXERCISE 3.11. Prove the following. For every ε> 0, there exists δ> 0 such that for everyΛ ∈ X4(Z[
p

2]),

• eitherΛ contains a Z[
p

2]-submodule preserved by U with norm smaller than ε,
• or

limsup
T→+∞

1

T
Leb{t ∈ [0,T ] |ut .Λ ∉Cδ} ≤ ε.





CHAPTER 5

Nondivergence on X3 and the strong form of Oppenheim conjecture

Back to the Top.
Notations:

• H := SOQ0 (R) with Q0(x1, x2, x3) := 2x1x3 −x2
2 ;

• X3 := { unimodular lattices in R3 };

• us :=
1 s s2

2
0 1 s
0 0 1

= exp

s ·
0 1 0

0 0 1
0 0 0

, U := {us : s ∈R} ⊂ H;

• vs :=
1 0 s

0 1 0
0 0 1

= exp

s ·
0 0 1

0 0 0
0 0 0

, V := {vs : s ∈R}*H ;

• at :=
e t 0 0

0 1 0
0 0 e−t

= exp

t ·
1 0 0

0 0 0
0 0 −1

, A := {at : t ∈R} ⊂ H;

• B := {at us : s, t ∈R} ⊂ H.

1. Summary

Finally, in this section we prove the strong form of Oppenheim conjecture. The general case can be reduced to the case of three
variables, which we now state

THEOREM 1.1. Let Q be a non-degenerate indefinite ternary real quadratic form that is not proportional to a rational quadratic
form. Then Q(Z3) is dense in R. Actually Q(Prim(Z3)) is dense in R.

THEOREM 1.2. For every non-closed orbit of H on X3, its closure contains a {vs }s≥0 or {vs }s≤0-orbit.

A stronger statement will be proved later. See Ch.12, Thm.1.1.
By similar arguments presented in Chapter 2, Thm.1.1 would follow from Thm.1.2 and the following (whose proof is left as an

exercise):

THEOREM 1.3. If an H-orbit is closed, then the stabilizer in H is discrete and of finite covolume in H. Also the corresponding quadratic
form is a scalar multiple of some rational quadratic form.

To promote the weak version to this one the following non-divergence theorem is needed.

THEOREM 1.4. For every ε> 0, there exists a compact subset C of X3 such that for everyΛ ∈ X3, at least one of the followings is true

1. The portion of time for us .Λ to spend outside C is smaller than ε, i.e.,

limsup
T→+∞

1

T
|{s ∈ [0,T ] |us .Λ ∉C }| ≤ ε;

2. Λ∩ {(x,0,0), x ∈R} contains a non-zero vector of length smaller than ε;
3. Λ∩ {(x, y,0), x, y ∈R} contains a lattice (of Re1 ⊕Re2) of covolume smaller than ε.

COROLLARY 1.5. Let ε ∈ (0,1) and pick C as in the above theorem. Then every orbit of B intersects non-trivially with C .

Finally let us make a convenient definition. Let e1 := (1,0,0) and e2 = (0,1,0).

DEFINITION 1.6. We say that R.e1 isΛ-rational iffΛ∩Re1 is a lattice in Re1, and Re1 ⊕Re2 isΛ-rational iffΛ∩Re1 ⊕Re2 is a lattice
in Re1 ⊕Re2. In either of these two cases, we say that the orbit U.Λ degenerates.

This notion is justified by the fact that in these cases the orbit is essentially contained in certain (embedded) SL2(R)nR2/SL2(Z)n
Z2, which is interpreted as the space of lattices of lower rank with a fixed volume together with a marked point in the quotient torus.

2. Proof of the theorem

Now let us prove Thm.1.2. Start with Λ0 with H.Λ0 non-closed. Let Y0 := H.Λ0. Define O as in Chapter 3, the union of all H-orbits
in Y0 that is open in Y0. Note that O 6= Y0.

The old argument takes care of the case when Y0 \O contains no degenerate U-orbits.
Indeed under this assumption every U-orbit in Y0 \O , by Thm.1.4, intersects with some fixed compact set non-trivially. Hence we

can find a nonempty U-minimal set Y1 in Y0 \O . As in Ch.3, there are two cases:

1. Y1 is A-stable, we consider Map(Y1,Y0) := {g Y1 ⊂ Y0};
2. Y1 is not A-stable, we consider Aut(Y1) := {g Y1 = Y1}.

The arguments in Ch.3 should go quite smoothly here. In case 1, you may need to do a further perturbation to guarantee the sequence
you get has a convergent subsequence.

2.1. New story, general assumption. However, it is unavoidable that Y0 \ O may contain some degenerate U-orbit. Let us take a
nonempty B minimal set Y1 ⊂ Y0 \ O whose existence is guaranteed by the nondivergence corollary Coro.1.5. Take some Λ1 ∈ Y1 such
that U.Λ1 degenerates. We will assume Re1 ⊕Re2 isΛ1-rational and leave the other case when Re1 isΛ1-rational to the reader.

29
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2.2. Case 1, no closed U-orbits. Assume Y1 contains no closed U-orbit.
As we assumed, U.Λ1 is stuck in the following closed set (for simplicity write Re1,2 :=Re1 ⊕Re2)

X3(Re1,2,c1) := {
Λ ∈ X3

∣∣Re1,2 isΛ-rational,
∥∥Λ∩Re1,2

∥∥= c1
}

where c1 := ∥∥Λ1 ∩Re1,2
∥∥. Also let

X2(c1) := {
lattices in R2 of covolume c1

}
.

Then we have a natural continuous surjection π : X3(Re1,2,c1) → X2(c1) with compact fibres that is equivariant with respect to

ρπ : {g ∈ SL3(R), g preserves Re1,2, det(g |Re1,2 ) = 1} → SL2(R)

g 7→ g |Re1,2 .

In particular we have

Now we wish to find a U-minimal set in Y1.

2.3. Case 1.1, some π(U.Λ2) is compact. Assume for someΛ2 ∈ Y1, π(U.Λ2) is closed and hence compact.
Then U.Λ2 is compact (since π is a proper map) and let U.Λ3 be a nonempty minimal U-set in Y2 := U.Λ2.
Then we can find pairs (xn , yn) in Y2 such that yn = exp(wn)xn with

• wn =
0 0 ∗

0 0 ∗
0 0 0

, wn 6= 0, wn → 0.

First assume wn ∈ Lie(V) for infinitely many n, then exp(wn) ∈ Aut(Y2) := {g ∈ SL3(R), g Y2 = Y2} and since the latter is a closed
subgroup, we have the full V ⊂ Aut(Y2).

Otherwise wn is not fixed by Ad(U) and for any δ> 0 and for n large enough we can find tn,δ such that

• ∥∥Ad(utn,δ ).wn
∥∥³ δ (i.e. for some constant C > 1, LHS belongs to (C−1δ,Cδ));

• every limit of
(
Ad(utn,δ ).wn

)
is in Lie(V).

And by taking a limit we find

• x∞,δ, y∞,δ ∈ Y2 and w∞,δ ∈ Lie(V) such that y∞,δ = exp(w∞,δ)x∞,δ;
• w∞,δ 6= 0, w∞,δ→ 0 as δ→ 0.

Arguing as above, we have V ⊂ Aut(Y2).

2.4. Case 1.2, π(U.Λ) is never compact. Assume for everyΛ ∈ Y1, π(U.Λ) is not compact.
Then there is some compact set such that every U.Λ intersects non-trivially for every Λ ∈ Y1. Therefore there is a nonempty U-

minimal set in Y1 and the rest of the proof is not so different from Sec.2.3.

2.5. Case 2, exists a closed U-orbit. Assume Y1 contains a closed U-orbit U.Λ2.

2.6. Case 2.1, recurrence in non-centralizer direction. Assume that there exists a sequence (yn) ⊂ Y0 converging toΛ2 such that

• yn = exp(wn)Λ2 with wn ∈ h⊥, wn ∉ Lie(V).

[Recall from Ch.3, h⊥ is a complement of h= soQ0 (R) in sl3(R) that is invariant under the adjoint action of SOQ0 (R)]
Without loss of generality assume ‖wn‖ < 1 for all n. Let

tn := inf{t ≥ 0 | ‖Adut .wn‖ = 1} .

Let ϕn : [0, tn] → {
w ∈ h⊥ ∣∣ ‖w‖ ≤ 1

}
defined by

ϕn(t ) := Ad(ut ).wn .

By passing to a subsequence, assume ϕn([0, tn]) converges (in Chabauty topology, or equivalently, w.r.t. Hausdorff distance). Let E∞
denote the limit set. It is connected and closed.

[Side remark: We want something more than the perturbation method as in Ch.3 could possibly provide.]
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2.6.1. Lucky case. Assume there is some δ0 > 0 such that

E∞∩ {‖w‖ ≤ δ0} ⊂ Lie(V).

For n large enough s.t. ‖wn‖ < δ0, we define

tn(δ0) := inf{t ≥ 0 | ‖Adut .wn‖ = δ0} .

By passing to a further subsequence we assume ϕn([0, tn(δ0)]) converges to E∞(δ0). By our assumption, E∞(δ0) is a connected subset
of {w ∈ Lie(V), ‖w‖ ≤ δ0}. So it is an interval. Since U commutes with V, for every w ∈ E∞, exp(w)U.Λ2 ⊂ Y0. Therefore,

v[0,δ0].Λ2 ⊂ Y0, or v[−δ0,0].Λ2 ⊂ Y0.

W.L.O.G, assume v[0,δ0].Λ2 ⊂ Y0. Hence for every t , s ∈R,

(20) v[0,e2tδ0]at us .Λ2 = at us v[0,δ0].Λ2 ⊂ at us Y0 = Y0.

By Thm.1.4, there exists a compact set such that for every t > 0, there exists st > 0 such that at ust .Λ2 lives in this compact set. In
particular we may select tn →+∞ and sn ∈R such that lim atn sn .Λ2 exists and call itΛ∞. Then by Equa.(20) and a continuity argument,
we have

v[0,+∞).Λ∞ ⊂ Y0.

So we are done.
2.6.2. Unlucky, try again! If the assumption in Sec.2.6.1 does not hold, then we can repeat what is done above the Sec.2.6.1. So we

get some E (2)∞ . If lucky, then we go back to Sec.2.6.1. If not, then we can repeat this process again to get E (3)∞ . It suffices to note that this
process should stop.

Indeed recall the computation we made in Ch.3, Equa.(10)

(21)

Ad(ut )w = t 2

2 w31 + t w21 +w11
t 3

3! w31 + t 2

2 w21 + t w11 + −w12
3

t 4

4! w31 + t 3

3! w21 + t 2

2 w11 + t −w12
3 + w13

6
t w31 +w21 ∗ ∗

w31 ∗ ∗

 .

If this process would continue, from the computation we sees right away that for w (i )∞ ∈ E (i )∞ , w∞ ∈ E∞,

(w∞)3,1 =0;(
w (2)

∞
)

3,1 =
(
w (2)

∞
)

2,1 = 0;(
w (3)

∞
)

3,1 =
(
w (3)

∞
)

2,1 =
(
w (3)

∞
)

1,1 = 0;(
w (4)

∞
)

3,1 =
(
w (4)

∞
)

2,1 =
(
w (4)

∞
)

1,1 =
(
w (4)

∞
)

1,2 = 0 =⇒ w (4)
∞ ∈ Lie(V).

Thus we are always lucky at some point.

2.7. Case 2.2, recurrence only in centralizer direction. Assume the assumption made in Sec.2.6 is wrong. This can be rephrased
as saying that there exists some δ0 > 0, assumed to be much smaller than InjRad(Λ2), such that

Obt−1 (
Map(Λ2,Y0)∩Nδ0 (id)

)⊂ h⊕Lie(V)

where Obt : h⊕h⊥ → SL3(R) is a local diffeomorphism (around (0,0)) defined by

Obt(h, w) := exp(h)exp(w).

This is the last and the most annoying case. It is here that we are using the fact that Y1 is B-minimal. We are going to derive a
contradiction and show that this case is not allowed. The argument below is a more-or-less reproduction of [BM00, Page 182].

2.7.1. Step 1. Y1 is not a closed B-orbit.
Indeed, otherwise, one sees that Y1 is even compact by Thm.1.4. But this is impossible by considering at .Λ2 as t →−∞.
2.7.2. Step 2. Step 1 together with minimality imply that there exists bn = anun ∈ B with an →∞ such that bn .Λ2 →Λ2. Note that

if we write an = atn then tn →+∞.
2.7.3. Step 3. Since Y1 ⊂ Y0 \O and by our assumption made in this subsection, we find (vn) ⊂ Lie(V) such that vn 6= 0, vn → 0 and

exp(vn).Λ2 ∈ Y0 for all n.
2.7.4. Step 4. This is the key step.
Since bn .Λ2 → Λ2, we can find for every large n, a unique λn close to id such that bn .Λ2 = λn .Λ2. By assumption one can write

λn = hn exp(v(λn)) for some hn ∈ H and v(λn) ∈ Lie(V). We want to argue that hn ∈ B.
Now fix some large n and will take l large compared to n. We have

bn .(exp(vl ).Λ2) = exp(v ′
l ).bn .Λ2 = exp(v ′

l ).λn .Λ2

where v ′
l = Ad(bn).vl ∈ Lie(V). When l is large compared to n, v ′

l is small.
By assumption for n large and l larger,

exp(v ′
l ) ·λn = exp(v ′

l )hn exp(v(λn)) ∈Nid(δ0)∩H ·V.

Although the computation of log(exp(X )exp(Y )) is usually hard, we still have (again, for l large)

exp(v ′
l )hn exp(v(λn)) ∈Nid(δ0)∩H ·V =⇒ exp(Ad(h−1

n ).v ′
l ) ∈Nid(δ0)∩H ·V

=⇒ exp(Ad(h−1
n ).v ′

l ) ∈Nid(δ0)∩V =⇒ Ad(h−1
n ).v ′

l ∈ Lie(V).

[some δ0 should be smaller than the others, we leave it to the reader to fill in the details]
As l varies, v ′

l spans Lie(V). Thus hn preserves Lie(V) and is contained in ±B, the normalizer of V in G. Since hn is close to the
identity, hn belongs to B. [Rmk: since hn is close to identity, this is a Lie algebraic calculation of ng(Lie(V)), the normalizer of Lie(V) in
g := sl3(R). That is, it suffices to compute the connected component of NG(V).]

Here is a pictorial summary:
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2.7.5. Step 5. Step 4 says that
bn .Λ2 = hn exp(v(λn)).Λ2

for some hn ∈ B close to the identity. This is impossible! Why? Note that Λ2 is a periodic U-orbit and everything here normalizes U.
Hence both sides are U-periodic. However, the centralizer of U preserves the period but atn (recall bn = atn un with tn →+∞ ) makes
the period much larger. This is a contradiction.

3. Proof of Theorem 1.4

From now on we discuss how Thm.1.4 is proved. From the start assume item 2 and 3 do not happen and want to prove item 1
holds.

A direct computation shows that a vector v ∈R3⊕∧2R3 is fixed by U iff v ∈Re1⊕Re1∧e2. For a primitive subgroup∆ ofΛ0 ∈ X3, we
still denote by ∆ the vector (well-defined up to ±1) representing ∆. For instance if ∆=Zv ⊕Zw , then ∆ is viewed as a vector ±v ∧w ∈
∧2R3. Now assume U.Λ0 does not degenerate, then every nonzero subgroup ∆ is not fixed by U and by the feature of polynomials,

lim
t→−∞‖ut .∆‖ = lim

t→+∞‖ut .∆‖ =+∞.

We can ensure at least the trajectory under U of each subgroup can not be small for a long time:

LEMMA 3.1. There exist C2 > 0 and α2 > 0 such that for every interval [a,b] in R, every x ∈ R3 ⊕∧2R3 and every ρ ∈ (0,1), if M0 :=
sups∈[a,b] ‖us x‖, then

1

b −a
Leb

{
s ∈ [a,b]

∣∣‖us x‖ < ρM0
}≤C2ρ

α2 ;

The proof is left as an exercise.
The key observation we made last time does not hold anymore. The following notion is aimed to save the situation, providing a

sufficient condition for being contained in a compact set.

DEFINITION 3.2. For δ,ρ ∈ (0,1), Λ ∈ X3 is said to be (δ,ρ)-protected (by the flag {{0} ⊂ Zv ⊂ ∆ ⊂ Λ}) iff there exists 0 ⊂ Zv ⊂ ∆ ⊂ Λ
where Zv and ∆ are primitive subgroups of rank 1 and 2 such that

‖v‖ ,‖∆‖ ∈ (ρδ,δ).

LEMMA 3.3. Take δ,ρ ∈ (0,1). IfΛ ∈ X3 is (δ,ρ)-protected thenΛ ∈Cρ .

PROOF. It suffices to prove that every non-zero vector w inΛ has norm at least ρ. So we may assume that ‖w‖ < 1.
Pick v and ∆ as in the definition. BecauseΛ is of covolume one, w has to be contained in ∆ since ‖w‖ < 1. Moreover

ρδ≤ ‖∆‖ ≤ ‖v‖ ·‖w‖ ≤ δ‖w‖ =⇒ ‖w‖ ≥ ρ.

�

Key observation. Here we have already employed the special feature of X3 (not valid for X≥4): once we find Zv and ∆ two primitive
subgroups such that ‖Zv‖ ,‖∆‖ < 1, then it is automatic that Zv is contained in ∆. Therefore, in searching for a flag that (δ,ρ)-protects
Λwe may look for Zv and ∆ in an independent way (the condition of Zv ⊂∆ automatically holds).

Thus Thm.1.4 follows from Lem.3.3, the key observation and the following:

LEMMA 3.4. For every ε> 0, there exist ε′,ρ,δ ∈ (0,1) such that for everyΛ nondegenerate, there exists T0 such that for all T ≥ T0,

1

T
Leb

{
t ∈ [0,T ]

∣∣ 6 ∃x ∈ Prim1(utΛ), ‖x‖ ∈ (ρδ,δ), ut .Λ ∉Cε′
}≤ ε,

and
1

T
Leb

{
t ∈ [0,T ]

∣∣ 6 ∃∆ ∈ Prim2(utΛ), ‖∆‖ ∈ (ρδ,δ), ut .Λ ∉Cε′
}≤ ε.

If we fix a compact set in X3 from the beginning and allow ε′,ρ,δ to depend on this compact set, then conclusion holds for T0 = 0
and allΛ contained in this compact set.

PROOF OF LEMMA 3.4. Let C2,α2 be as in Lem.3.1.
Fix some δ ∈ (0,1). Take ε′ := δ/2. Choose ρ ∈ (0,1) small enough such that C2(2ρ)α2 < 0.5ε. Assume thatΛ contains no degenerate

vectors. We are going to prove the first inequality and the second one can be proved similarly, which is left as an exercise.
By taking T0 large enough, we assume that for every Zv ∈ Prim1(Λ), for some t ∈ (0,T0), ‖ut .v‖ ≥ δ (and we can forget about the

non-degeneracy condition from now on).
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Indeed, take t = 1, there are only finitely many Zv ∈ Prim1(Λ) such that ‖ut .v‖ < δ. List them as {Zv1, ...,Zvl }. Since ut does not fix
vi for every i by non-degeneracy condition, we have that ‖ut .vi‖→+∞ as t →+∞. So we can pick T0 such that

∥∥uT0 .vi
∥∥> δ for every

i and this would do the job.
Consider the set {t ∈ (0,T ),ut .Λ ∉Cδ/2}, which is open and hence can be written as a disjoint union of open intervals. Take one of

them, say (a,b). At the moment, we have not excluded the possibility of (a,b) = (0,T ) yet.
For every t ∈ (a,b), by definition, there is some Zv ∈ Prim1(Λ) such that ‖ut .v‖ < δ/2. For every such Zv and t , define O (Zv, t ) to

be the maximal open interval in R containing t such that

s ∈O (Zv, t ) =⇒ ‖ut .v‖ < δ.

From the definition, it is possible that O (Zv, t ) is not contained in (a,b), or even (0,T ). On the other hand, it is impossible for (0,T ) to
be contained in O (Zv, t ) by the choice of T0. Thus,

sup
(0,T )∩O (Zv,t )

‖ut .v‖ ≥ δ.

If (a,b) contains some end point of O (Zv, t ) then this also holds replacing (0,T ) by (a,b). Otherwise, we must have for t = a or t = b,
sys(ut .Λ) = δ/2. No matter what, the following always holds

(22) sup
(a,b)∩O (Zv,t )

‖ut .v‖ ≥ δ

2
.

As Zv, t varies, {O (Zv, t )∩ (a,b)} covers (a,b). Now we claim that it is possible to select a subcovering with multiplicity at most 2
(the number 2 is not important, but it should be an absolute constant). The multiplicity of a covering refers to the maximal number of
possible overlaps. Here is one possible way of proving the claim, you may wish to find your own.

Since each of a,b belongs to some O (Zv, t ), we can find a finite collection of {O (Zv, t )} that covers (a,b). By passing to a further
sub-covering if necessary, we assume it is minimal and is given by {O (Zvi , ti ) = (ai ,bi )} with ai < ai+1. Then we must have

a1 < a < a2 < b1 < a3 < b2 < a4 < .... < al < bl−1 < b < bl ,

and the claim follows.
Let Ii := (ai ,bi )∩ (a,b). By Equa.(22), sups∈Ii

‖us .vi‖ ≥ δ
2 . Then by Lem.3.1,

1

|Ii |
∣∣∣∣{s ∈ Ii

∣∣∣∣‖us .vi‖ ≤ (2ρ) · δ
2

}∣∣∣∣≤C2(2ρ)α2 ≤ 0.5ε.

Adding them together completes the proof. �

4. Exercises

4.1. (C ,α)-good property of polynomials of bounded degree. Let C ,α> 0 and J be an interval in R, recall a function f : J → R is
said to be (C ,α)-good on J iff for every interval I ⊂ J of finite length and every ρ ∈ (0,1),

(23)
1

|I | Leb
{

t ∈ I
∣∣ ∣∣ f (t )

∣∣≤ ρMI
}≤Cρα.

where MI := supt∈I

∣∣ f (t )
∣∣.

In this set of exercises we show that there are constants (C ,α) such that every polynomial of degree at most three is (C ,α)-good on
R. The general case would follow from the same proof with some constant depending only on the degree.

Given four distinct points v = (v0, v1, v2, v3) in R, for k = 0,1,2,3, define

Lk
v (x) := ∏

i 6=k

x − vi

vk − vi
.

EXERCISE 4.1. Fix such a v as above. Prove that for any choice of four real numbers (w0, w1, w2, w3), there exists at most one polyno-
mial p of degree at most 3 such that p(vi ) = wi .

EXERCISE 4.2. Same assumption as in last exercise. Show that p(x) :=∑3
k=0 wk ·Lk

v (x) satisfies p(vi ) = wi for every i = 0,1,2,3.

EXERCISE 4.3. Same assumption as in last exercise. Let ε,δ > 0 be two positive real numbers. Assume further that |vi − v j | ≥ δ for
every pair (i , j ) with i 6= j . Also assume |wi | ≤ ε for all i . Show that for every x ∈ [0,1],

∣∣p(x)
∣∣≤ 4εδ−3 where p is as in the last exercise.

EXERCISE 4.4. Let I ⊂ [0,1] be a measurable subset with Leb(I ) = 9δ > 0. Show that there exists four points (v0, v1, v2, v3) in I such
that |vi − v j | ≥ δ for every pair (i , j ) with i 6= j .

EXERCISE 4.5. Find C ,α> 0 such that for every polynomial of degree at most three and ρ ∈ (0,1), Equa.(26) holds when I = [0,1].

EXERCISE 4.6. Show that every polynomial of degree at most three is (C ,α)-good on Rwith C ,α same as in the last exercise.





CHAPTER 6

Nondivergence of unipotent flows on XN

Back to the Top.
Notations

• XN := {
unimodular lattices in RN

}∼= SLN (R)/SLN (Z);
• for a discrete subgroup ∆ in RN , let ‖∆‖ := Vol(∆R/∆) where ∆R denotes the R-linear span of ∆ in RN ;
• forΛ≤RN , sys(Λ) := infv 6=0∈Λ ‖v‖, and for δ> 0, Cδ := {

Λ ∈ XN : sys(Λ) ≥ δ}
;

• Primk (Λ) := {
primitive subgroups ofΛ of rank k

}
, Prim(Λ) :=⋃rank(Λ)

k=0 Primk (Λ).

1. Summary and definitions

We would like to illustrate the main ideas behind [Kle10, Section 3] using X4 as an example. The discussion can be generalized to
XN and even to G(R)/G(Z) for other semisimple algebraic groups G. Warning: our presentation and sometimes definitions differ from
[Kle10, Section 3] and is “less careful” in many ways.

The discussion is useful beyond unipotent flows on XN . We would like to mention [EMS97, MW02] here.

DEFINITION 1.1. Fix (C ,α) two positive constants. A map φ : I → SLN (R) is said to be (C ,α)-good at Λ ∈ XN if for every primitive
subgroup ∆ ofΛ, every interval J ⊂ I , every ρ ∈ (0,1) (the case ρ ≥ 1 is rather trivial), define M(J ,∆) := sups∈J

∥∥φs .∆
∥∥, then we have

1

|J |
∣∣{s ∈ J

∣∣∥∥φs .∆
∥∥≤ ρ ·M(J ,∆)

}∣∣≤C ·ρα.

The main examples for us are unipotent flows.

LEMMA 1.2. There are constants CN ,αN > 0, depending only on N such that for every nilpotent matrix u in slN (R) and for every
(finite or infinite) interval I in R, φ(t ) := exp(t .u) is (CN ,αN )-good at everyΛ ∈ XN .

PROOF. Exercise or see [Kle10]. �

THEOREM 1.3. Fix C ,α,ε,δ positive constants. There exists a constant κ= κ(C ,α,ε,δ) > 0 such that the following holds. Let Λ ∈ XN

and φ : I → SLN (R). Assume

• φ is (C ,α)-good atΛ;
• supt∈I

∥∥φt .∆
∥∥≥ δ for every ∆ ∈ Prim(Λ),

then
1

|I | Leb
{

s ∈ I
∣∣φs .Λ ∉Cκ

}≤ ε.

In the case of unipotent flows and an interval I of infinite length, if the condition fails, thenΛ contains a primitive subgroup fixed
by the unipotent flow with small norm.

2. Nondivergence and flags

The key notion is being (δ,ρ)-protected, which provides a sufficient condition to guarantee non-divergence.

DEFINITION 2.1.
A subset F of Prim(Λ) is said to be a flag if for every two elements ∆1 and ∆2 in F , either ∆1 ⊂ ∆2 or ∆1 ⊃ ∆2. The length of a flag F is
simply the cardinality of F .

DEFINITION 2.2.
Let δ,ρ ∈ (0,1). LetΛ ∈ XN and F = {∆1(∆2( ...(∆l } be a flag in Prim(Λ). We say thatΛ is weakly (δ,ρ)-protected by F iff

1. ρ ·δ≤ ‖∆i‖ ≤ δ for every i = 1, .., l ;
2. ‖∆‖ ≥ 0.5δ for every ∆ ∉F comparable with F , i.e. F ∪ {∆} is still a flag.

Now given a map φ : I → SLN (R). We say that s ∈ I is weakly (δ,ρ)-protected by F iff

1. ρ ·δ≤ ∥∥φs .∆i
∥∥≤ δ for every i = 1, .., l ;

2.
∥∥φs .∆

∥∥≥ 0.5δ for every ∆ ∉F comparable with F .

That is to say, φs .Λ is weakly (δ,ρ)-protected by φs .F .

I shall drop the word “weakly” later. But keep in mind our definition is different from [Kle10] where 0.5δ is replaced by δ.
From the definition, such a flag is not allowed to contain {0} orΛ. Thus the maximal possible length is N −1.
One may wish to compare with the definition of Siegel sets.

LEMMA 2.3 (Criterion of non-divergence in terms of flags). Fix δ,ρ ∈ (0,1). Assume for some reason that ρ < 0.5. Then there exists a
constant θ = θ(δ,ρ) > 0 (from the proof, can take θ = ρNδ) such that ifΛ ∈ XN is (δ,ρ)-protected by some flag F of Prim(Λ), then ‖∆‖ ≥ θ
for every primitive subgroup ∆≤Λ. In particular sys(Λ) ≥ θ.

35
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PROOF OF A SPECIAL CASE. Say F = {∆1 ≤∆2}, which gives a filtration ofΛ. For v ∈Λ, there are three cases. We will show ‖v‖ ≥ ρδ.
Case 1. v ∈Λ\∆2.

Then ∆2 +Z.v is compatible with F , though it may not be primitive. ((∆2)R+R.v)∩Λ is a primitive subgroup compatible with F and
contains ∆2 +Z.v . Thus

‖∆2 +Z.v‖ ≥ ‖((∆2)R+R.v)∩Λ‖ ≥ 0.5δ.

On the other hand

‖∆2 +Z.v‖ ≤ ‖∆2‖ ·‖v‖ ≤ δ‖v‖ .

Combined together gives ‖v‖ ≥ 0.5.
Case 2. v ∈∆2 \∆1.

Either ∆1 +Z.v has the same rank as ∆2 or not. Anyway, we always have,

‖∆1 +Z.v‖ ≥ min{ρδ,0.5δ} = ρδ.

On the other hand

‖∆1 +Z.v‖ ≤ ‖∆1‖ ·‖v‖ ≤ δ‖v‖ .

Combined together gives ‖v‖ ≥ ρ.
Case 3. v ∈∆1.

Then either Z.v has the same rank as ∆1, in which case ‖Z.v‖ ≥ ‖∆1‖ ≥ ρδ, or Z.v has smaller rank than ∆1, in which case ‖Z.v‖ ≥
0.5δ≥ ρδ.

�

PROOF IN GENERAL. [Read this only if you feel necessary!] Let F = {∆1(∆2( ...(∆l } be the flag and∆ is a primitive subgroup of
Λ. Let Vk :=RN /(∆k )R and πk be the natural quotient map RN →Vk .

Note that if ∆′ ≤Λ is contained in ∆k for some k ∈ {1, ..., l }, then

(24)
∥∥πk−1(∆′)

∥∥
Vk−1

= ∥∥πk−1(∆′+∆k−1)
∥∥

Vk−1
=

∥∥∆′+∆k−1
∥∥

‖∆k−1‖
≥ min

{
ρδ,0.5δ

}
δ

≥ ρ.

Let a be the largest index such that ∆a is contained in ∆. By default, ∆0 := {0} if ∆1 6= {0}. If a = l , then we are done with θ = ρδ.
Assume otherwise.

‖∆‖ =‖πa+1(∆)‖Va+1 · ‖∆∩∆a+1‖ = ‖πa+1(∆+∆a+1)‖Va+1 · ‖πa(∆∩∆a+1)‖Va · ‖∆a‖
=‖πa+2(∆)‖Va+2 · ‖πa+1(∆+∆a+1)∩πa+1(∆a+2)‖Va+1 · ‖πa(∆∩∆a+1)‖Va · ‖∆a‖
=‖πa+2(∆)‖Va+2 · ‖πa+1 ((∆+∆a+1)∩∆a+2)‖Va+1 · ‖πa(∆∩∆a+1)‖Va · ‖∆a‖
=‖πa+2(∆)‖Va+2 · ‖πa+1 (∆∩∆a+2)‖Va+1 · ‖πa(∆∩∆a+1)‖Va · ‖∆a‖

......

=‖πa+k−1 (∆∩∆a+k )‖Va+k−1
· ... · ‖πa+1 (∆∩∆a+2)‖Va+1 · ‖πa(∆∩∆a+1)‖Va · ‖∆a‖

=‖πa+k−1 (∆∩∆a+k )‖Va+k−1
· ... · ‖πa+1 (∆∩∆a+2)‖Va+1 · ‖πa(∆∩∆a+1)‖Va · ‖∆a‖

where k is the smallest positive integer such that ∆ is contained in ∆a+k . By invoking Equa.(24),

‖∆‖ ≥ ρkδ.

So we are done by taking θ := ρNδ. �

3. The proof

Instead of proving by induction, we have decided to unfold this process. This makes the proof much longer but hopefully less
mysterious. Here is a guide for Step 1-3.
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Step 1. By assumption for every ∆ ∈ Prim(Λ),

sup
s∈I

∥∥φs .∆
∥∥≥ δ.

Consider the open subset

I ′ := {
s ∈ I

∣∣∃∆ ∈ Prim(Λ),
∥∥φs .∆

∥∥< 0.9δ
}

Write it as a disjoint union of open intervals

I ′ = ⊔
a∈I0

Ia .

Thus for every ∆ ∈ Prim(Λ),

sup
t∈I ′

∥∥φs .∆
∥∥≥ 0.9δ.

For a ∈I0, consider (the 0.9 here is just to get a finite cover later, but it is not necessary to do so)

Aa := {
(x,∆) ∈ Ia ×Prim(Λ)

∣∣∥∥φx .∆
∥∥< 0.9δ

}
.

For each (x,∆) ∈Aa , define

I (x,∆) := the connected component of
{

s ∈ Ia
∣∣∥∥φs .∆

∥∥< δ}
containing x.

For every x ∈ Ia , pick some∆x such that Ix := I (x,∆x ) is maximal among (the finitely many) I (x,∆) as (x,∆) varies in Aa . By this choice,
Ix and ∆x satisfy

1. for every ∆ ∈ Prim(Λ), sups∈Ix

∥∥φs .∆
∥∥≥ 0.9δ;

2. sups∈Ix

∥∥φs .∆x
∥∥≤ δ.

Ia admits a finite sub-covering by Ix ’s and by passing to a further sub-covering, we assume

Ia = ⋃
x∈Ia

Ix with multiplicity ≤ 2

where Ia is certain finite subset of Ia (finiteness is not important, multi ≤ 2 is). Also define

Px := {
∆ ∈ Prim(Λ)

∣∣∆ is comparable to ∆x
}

.

Step 2. Consider the open subset of Ix :

I ′x := {
s ∈ Ix

∣∣∃∆ ∈Px ,
∥∥φs .∆

∥∥< 0.8δ
}

.

Write it as a disjoint union of open intervals

I ′x = ⊔
b∈Ix

Ib .

For b ∈Ix , consider

Ab := {
(y,∆) ∈ Ib ×Px

∣∣∥∥φy .∆
∥∥< 0.8δ

}
.

For each (y,∆) ∈Ab , define

I (y,∆) := the connected component of
{

s ∈ Ib
∣∣∥∥φs .∆

∥∥< 0.9δ
}

containing y.

For every y ∈ Ib , pick some ∆y such that Ix,y := I (y,∆y ) is maximal among (the finitely many) I (y,∆) as (y,∆) varies in Ab . By this
choice, Ix,y and ∆y satisfy

1. for every ∆ ∈Px , sups∈Ix,y

∥∥φs .∆
∥∥≥ 0.8δ;

2. sups∈Ix,y

∥∥φs .∆y
∥∥≤ 0.9δ.

Similarly,

Ib = ⋃
y∈Ib

Ix,y with multiplicity ≤ 2

where Ib is some finite subset of Ib . Also define

Px,y := {
∆ ∈ Prim(Λ)

∣∣∆ is comparable to {∆x ,∆y }
}

.
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Step 3. Consider the open subset of Ix,y :

I ′x,y := {
s ∈ Ix,y

∣∣∃∆ ∈Px,y ,
∥∥φs .∆

∥∥< 0.7δ
}

.

Write it as a disjoint union of open intervals

I ′x,y =
⊔

c∈Ix,y

Ic .

For c ∈Ix,y , consider

Ac := {
(z,∆) ∈ Ic ×Px,y

∣∣∥∥φz .∆
∥∥< 0.7δ

}
.

For each (z,∆) ∈Ac , define

I (z,∆) := the connected component of
{

s ∈ Ic
∣∣∥∥φs .∆

∥∥< 0.8δ
}

containing z.

For every z ∈ Ic , pick some ∆z such that Ix,y,z := I (z,∆z ) is maximal among (the finitely many) I (z,∆) as (z,∆) varies in Ac . By this
choice, Ix,y,z and ∆z satisfy

1. for every ∆ ∈Px,y , sups∈Ix,y,z

∥∥φs .∆
∥∥≥ 0.7δ;

2. sups∈Ix,y,z

∥∥φs .∆z
∥∥≤ 0.8δ.

Similarly,

Ic =
⋃

z∈Ic

Ix,y,z with multiplicity ≤ 2

where Ic is certain finite subset of Ic . Now {∆x ,∆y ,∆z } is already a complete flag modulo {0} andΛ.

Good and bad points 1. For x, a, y,b, z, let

Ix,y,z (Good) := {
s ∈ Ix,y,z

∣∣∥∥φs .∆z
∥∥≥ ρδ}

, Ix,y,z (Bad) := Ix,y,z \ Ix,y,z (Good).

By (C ,α)-goodness, we choose ρ ∈ (0,1) such that ∣∣Ix,y,z (Bad)
∣∣≤ (0.01ε)

∣∣Ix,y,z
∣∣ .

Thus ∣∣∣I ′x,y (Bad)
∣∣∣ :=

∣∣∣∣∣ ⊔
c∈Ix,y

⋃
z∈Ic

Ix,y,z (Bad)

∣∣∣∣∣≤∑
c

∑
z

∣∣Ix,y,z (Bad)
∣∣≤∑

c

∑
z

(0.01ε) · ∣∣Ix,y,z
∣∣

≤∑
c

2(0.01ε) · |Ic | = (0.02ε) ·
∣∣∣I ′x,y

∣∣∣ .

Define I ′x,y (Good) := I ′x,y \ I ′x,y (Bad), so I ′x,y = I ′x,y (Good)t I ′x,y (Bad).
So far, we have the following regarding each Ix,y :

1. s ∈ Ix,y \ I ′x,y =⇒ ∥∥φs .∆
∥∥≥ 0.7δ, ∀∆ ∈Px,y ;

2. s ∈ I ′x,y (Good) =⇒ ∃∆z ∈Px,y , ρδ≤ ∥∥φs .∆z
∥∥≤ 0.8δ;

3.
∣∣∣I ′x,y (Bad)

∣∣∣≤ 2δ ·
∣∣∣I ′x,y

∣∣∣.
Good and bad points 2. Define

Ix,y (Good) := {
s ∈ Ix,y

∣∣∥∥φs .∆y
∥∥≥ ρδ}

, Ix,y (Bad) := Ix,y \ Ix,y (Good).

And ρ is chosen such that ∣∣Ix,y (Bad)
∣∣≤ (0.01ε)

∣∣Ix,y
∣∣ .

Thus, ∣∣I ′x (Bad)
∣∣ :=

∣∣∣∣∣ ⊔
b∈Ix

⋃
y∈Ib

Ix,y (Bad)

∣∣∣∣∣≤∑
b

∑
y

∣∣Ix,y (Bad)
∣∣≤∑

b

∑
y

(0.01ε) · ∣∣Ix,y
∣∣

≤∑
b

2(0.01ε) · |Ib | = (0.02ε) · ∣∣I ′x
∣∣ .

Define I ′x (Good) by imposing I ′x = I ′x (Good)t I ′x (Bad).
So far, regarding Ix we have:

1. s ∈ Ix \ I ′x =⇒ ∥∥φs .∆
∥∥≥ 0.8δ, ∀∆ ∈Px ;

2. s ∈ I ′x (Good)∩ Ix,y =⇒ ρδ≤ ∥∥φs .∆y
∥∥≤ 0.9δ;

3.
∣∣I ′x (Bad)

∣∣≤ 2δ · ∣∣I ′x
∣∣.

Good and bad points 3. Finally, define

Ix (Good) := {
s ∈ Ix

∣∣∥∥φs .∆x
∥∥≥ ρδ}

, Ix (Bad) := Ix \ Ix (Good).

And ρ is chosen such that

|Ix (Bad)| ≤ 0.01ε |Ix | .
Thus, ∣∣I ′(Bad)

∣∣ :=
∣∣∣∣∣ ⊔

a∈I0

⋃
x∈Ia

Ix (Bad)

∣∣∣∣∣≤∑
a

∑
x
|Ix (Bad)| ≤∑

a

∑
x

0.01ε · |Ix |

≤∑
a

2 ·0.01ε · |Ia | = (0.02ε) · ∣∣I ′
∣∣ .

Define I ′(Good) by imposing I ′ = I ′(Good)t I ′(Bad). Here we have:

1. s ∈ I \ I ′ =⇒ ∥∥φs .∆
∥∥≥ 0.9δ, ∀∆ ∈ Prim(Λ);

2. s ∈ I ′(Good)∩ Ix =⇒ ρδ≤ ∥∥φs .∆x
∥∥≤ δ;

3.
∣∣I ′(Bad)

∣∣≤ 2δ · ∣∣I ′
∣∣ .
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Warp-up. Now we collect all the bad points together and let

I (Bad) := I ′(Bad)∪
( ⋃

a∈I0,x∈Ia

I ′x (Bad)

)
∪

( ⋃
a∈I0,x∈Ia

⋃
b∈Ix ,y∈Ib

I ′x,y (Bad)

)
We have ∣∣∣∣∣ ⋃

a,x,b,y
I ′x,y (Bad)

∣∣∣∣∣≤ ∑
a,x,b∈Ix

∑
y∈Ib

∣∣∣I ′x,y (Bad)
∣∣∣≤ (0.02ε) · ∑

a,x,b

∑
y

∣∣Ix,y
∣∣

≤(0.04ε) · ∑
a,x,b∈Ix

|Ib | ≤ (0.04ε) ·∑
a,x

|Ix |

≤(0.08ε) · |I |
and ∣∣∣∣∣ ⋃

a∈I0,x∈Ia

I ′x (Bad)

∣∣∣∣∣≤ ∑
a∈I0

∑
x∈Ia

∣∣I ′x (Bad)
∣∣≤ (0.02ε) · ∑

a∈I0

∑
x∈Ia

|Ix |

≤(0.04ε) · ∑
a∈I0

|Ia | ≤ (0.04ε) · |I | .

Hence

(25) |I (Bad)| ≤ (0.14ε) · |I | < ε |I | .
Let s ∈ I \ I (Bad).
Case 1. s ∈ I \ I ′, then

∥∥φs .∆
∥∥≥ 0.9δ> 0.5δ, ∀∆ ∈ Prim(Λ) so it is (δ,ρ)-protected by the trivial flag.

Case 2. s ∈ I ′ \ I (Bad) = (tIa) \ I (Bad) = (ta ∪x Ix ) \ I (Bad). Say s ∈ Ix \ I (Bad). Then

ρδ≤ ∥∥φs .∆x
∥∥≤ δ.

Case 2.1. s ∈ Ix \ I ′x . Then
∥∥φs .∆

∥∥≥ 0.8δ> 0.5δ for all ∆ ∈Px . This means that s is (ρ,δ)-protected by {∆x }.
Case 2.2. s ∈ I ′x \ I (Bad) = (tIb) \ I (Bad) = (tb ∪y Ix,y ) \ I (Bad). Say s ∈ Ix,y \ I (Bad). Then

ρδ≤ ∥∥φs .∆y
∥∥≤ δ.

Case 2.2.1. s ∈ Ix,y \ I ′x,y . Then
∥∥φs .∆

∥∥≥ 0.7δ> 0.5δ for all ∆ ∈Px,y . This means that s is (ρ,δ)-protected by {∆x ,∆y }.
Case 2.2.2. s ∈ I ′x,y \ I (Bad) =tc Ic \ I (Bad) =tc ∪z Ix,y,z \ I (Bad). Say x ∈ Ix,y,z \ I (Bad), then

ρδ≤ ∥∥φs .∆z
∥∥≤ δ.

Thus s is (δ,ρ)-protected by {∆x ,∆y ,∆z }.
Now every s ∈ I \I (Bad) falls into one of the cases 1, 2.1, 2.2.1 and 2.2.2, so it is (δ,ρ)-protected. Hence Lem.2.3 implies if s ∈ I \I (Bad)

then φs .Λ ∈Cθ with θ = θ(δ,ρ). Now we take κ := θ. Combining with Equa.(25), we are done.

4. Exercises

4.1. More examples of (C ,α)-good functions. Let C ,α> 0 and J be an interval in R, recall a function f : J →R is said to be (C ,α)-
good on J iff for every interval I ⊂ J of finite length and every ρ ∈ (0,1),

(26)
1

|I | Leb
{

t ∈ I
∣∣ ∣∣ f (t )

∣∣≤ ρMI
}≤Cρα.

where MI := supt∈I

∣∣ f (t )
∣∣.

Let J be an interval of finite length. Let
A := { f = aex +be−x , a,b ∈R}.

EXERCISE 4.1. Show that there exist C ,α> 0 (depending on J and A ) such that for every function f ∈A is (C ,α)-good on J.

EXERCISE 4.2. If f1, f2 are (C ,α)-good on J, then x 7→ max
{∣∣ f1(x)

∣∣ ,
∣∣ f2(x)

∣∣} is also (C ,α)-good on J.





CHAPTER 7

Ergodicity and Mixing

Back to the Top.

1. Basic constructions

For details the reader may consult [EW11], especially chapter 8 and appendices therein.
Let G be a “nice” (σ-compact locally compact metrizable) topological group and X a “nice” (σ-compact locally compact metriz-

able) topological space. Assume G acts on X continuously, i.e. we have a continuous map G × X → X satisfying some compatibility
conditions.

Let BX be the σ-algebra on X generated by open sets in X . This is termed the Borel σ-algebra. Then the G-action is also measur-
able with respect to BX . Thus G naturally acts on measures on (X ,BX ).

DEFINITION 1.1. A measure µ on BX is called a Borel measure. It is called a probability measure iff µ(X ) = 1. The collection of all
probability measures is denoted as Prob(X ). We view Prob(X ) as a topological space equipped with the weak-∗ topology.

More precisely, we embed Prob(X ) with the weakest topology such that

µ 7→
∫

f (x)µ(x)

is continuous for every

f ∈Cc (X ) := { compactly supported real-valued continuous functions on X }.

Being real-valued or complex-valued is not important.
Let

Meas(X )≤1 := { finite measures µ on X , µ(X ) ≤ 1},

also equipped with weak-∗ topology. We also let

LFM(X ) := { locally finite measures on X },

be equipped with weak-∗ topology. Note that Cc (X ) admits a countable dense subset.

LEMMA 1.2. With weak-∗ topology, Meas(X )≤1 is a compact metrizable space. If X is compact, then so is Prob(X ).

REMARK 1.3. If we forget about the topological structure on X , and take some probability measure µ, then up to completion,
(X ,BX ,µ) is “isomorphic” to a convex combination of the natural measure on [0,1] interval and atomic measures supported on sin-
gle points (see [Wal82, Theorem 2.1]). Thus the study of (X ,BX ,µ) is rather boring without a group action, unlike the topological space
X , when the classification of X is already a huge problem.

We naturally has an action of G on Prob(X ), Meas≤1(X ) and LFM(X ) defined by

g∗µ(E) :=µ(g−1E)

for every measurable set E and measure µ.

LEMMA 1.4. The induced map G ×LFM(X ) → LFM(X ) is continuous.

A measure µ is said to be G-invariant iff g∗µ = µ for all g ∈ G . The collection of G-invariant probability measures is denoted as
Prob(X )G . Similarly define Meas≤1(X )G and LFM(X )G .

To distinguish different p.m.p(= probability measure preserving) actions of G , a convenient functor is given by taking the associ-
ated unitary representation.

Take a µ ∈ LFM(X )G . Then the associated unitary representation is given by

G ×L2(X ,µ) →L2(X ,µ)

(g ,φ) 7→g ·φ(x) :=φ(g−1x)

LEMMA 1.5. This is indeed a unitary representation:

1. for each g ∈G, the action on L2(X ,µ) is a unitary;
2. the representation is continuous

where U (L2(X ,µ)), the set of unitary operators on L2(X ,µ), is equipped with the strong operator topology.

In more concrete terms, using the following lemma, the continuity claim just asserts that if gn → g in G and φn → φ in L2(X ,µ),
then gn ·φn → g ·φ in L2(X ,µ).

LEMMA 1.6. L2(X ,µ) admits a countable dense subset.

For two p.m.p. G-actions to be isomorphic, it is necessary for the associated unitary representations to be isomorphic. Properties
of p.m.p. G-actions defined via the associated unitary representation are sometimes called “spectral properties”.
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2. Ergodicity and mixing

We assume G and X to be nice in this section.

DEFINITION 2.1. A p.m.p. G-action on (X ,BX ,µ) is said to be ergodic iff every G-invariant measurable subset E of X is either µ-null
(µ(E) = 0) or µ-conull (µ(X \ E) = 0).

So ergodicity is something like irreducibility.

LEMMA 2.2. If a p.m.p. G-action on (X ,BX ,µ) is ergodic, then every µ-almost invariant measurable subset of X is either µ-null or
µ-conull.

A measurable subset E ⊂ X is said to be µ-almost invariant iff for every g ∈G ,

µ(g E∆E) =µ((g E \ E)∪ (E \ g E)) = 0.

Since our group could be uncountable, this lemma is not obvious. Using this lemma, one can show that

LEMMA 2.3. A p.m.p. G-action on (X ,BX ,µ) is ergodic iff the associated unitary representation has no fixed vector orthogonal to
constants.

Hint: Starting from a set E , one has the characteristic function 1E . Starting from a function f , one considers its level sets.
By this lemma, being ergodic is a spectral property. Another spectral property we need is mixing.

DEFINITION 2.4. A p.m.p. G-action on (X ,BX ,µ) is said to be mixing iff for every two measurable subsets E ,F ⊂ X and every
divergent sequence (gn) in G, we have

lim
n→∞µ(g−1

n E ∩F ) =µ(E)µ(F ).

This notion is useless for compact groups.

LEMMA 2.5. A p.m.p. G-action on (X ,BX ,µ) is mixing iff for every two φ,ψ ∈ L2(X ,µ) orthogonal to constants and every divergent
sequence (gn) in G, we have

lim
n→∞〈gn ·φ,ψ〉 = 0.

Here 〈φ,ψ〉 := ∫
φ(x)ψ(x)µ(x).

3. Unitary representations of SL2(R) are mixing

Notations

• G := SL2(R) and Γ is a discrete subgroup of G;

• A :=
{[

e t 0
0 e−t

]
, t ∈R

}
= {at , t ∈R};

• U :=
{[

1 s
0 1

]
, s ∈R

}
= {us , s ∈R};

• B := A ·U.

For convenience let us make the following definition

DEFINITION 3.1. A unitary representation π : G → U (H ) is mixing iff for every v, w ∈ H and every divergent sequence (gn) in G,
limn→∞〈gn .v, w〉 = 0.

Unitary representations, if containing no non-zero vectors fixed by G, of G = SL2(R) are always mixing.

THEOREM 3.2. Let π be a unitary representation of G on a separable Hilbert space H . Assume there is no non-zero G-fixed vectors.
Then π is mixing.

PROOF. By “K AK -decomposition” (see the comment after the proof for an explanation), it suffices to show that π|A is mixing. So
take (an) to be a divergent sequence in A. By a diagonal argument, we find an infinite subsequence (ank ) such that for every φ,ψ ∈H ,

lim
k→∞

〈ankφ,ψ〉 exists.

This defines a linear map E : H →H such that the above limit is equal to 〈Eφ,ψ〉. One can check ‖E‖op ≤ 1 where ‖·‖op stands for the
operator norm. It suffices to show that E = 0, which is going to be achieved by showing that every vector contained in the image of E is
fixed by G.

By passing to a further subsequence we assume either
(
log(ank )

)
1,1 →+∞ or −∞.

Define

U− :=
{

x ∈ G

∣∣∣∣ lim
k→+∞

ank xa−1
nk

= 1

}
, U+ :=

{
x ∈ G

∣∣∣∣ lim
k→+∞

a−1
nk

xank = 1

}
There are two things we firstly note. Let E∗ be the adjoint of E .
1. E ◦u = E for every u ∈U−. Indeed, for every pair φ,ψ in H ,

〈Euφ,ψ〉 = lim〈ank uφ,ψ〉 = lim〈ank ua−1
nk

ankφ,ψ〉
= lim〈ankφ, ank u−1a−1

nk
ψ〉 = 〈Eφ,ψ〉.

The last step is because
(
ank u−1a−1

nk
ψ

)
converges to ψ in norm. Hence E ◦u = E . By taking the adjoint, we get u−1 ◦E∗ = E∗. Thus the

image of E∗ is fixed by U−.
2. u ◦E = E for every u ∈U+. For every pair φ,ψ,

〈uEφ,ψ〉 =〈Eφ,u−1ψ〉 = lim〈ankφ,u−1ψ〉 = lim〈ank a−1
nk

uankφ,ψ〉
= lim〈ankφ,ψ〉 = 〈Eφ,ψ〉.

Hence u ◦E = E .
Next is the trick. As the ∗ operation is continuous with respect to W.O.T., (a−1

nk
) = (a∗

nk
) converges in W.O.T. to E∗.
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3. kerE = kerE∗. Indeed,

〈Eφ,Eφ〉 = lim
l

lim
k
〈ankφ, anlφ〉 = lim

l
lim

k
〈a−1

nl
φ, a−1

nk
φ〉 = 〈E∗φ,E∗φ〉

(Exercise: show that in general kerE 6= kerE∗ for a bounded linear operator on a Hilbert space.)
Now we can finish the proof. 1. says that E(1−u) = 0, ∀u ∈U−. Combined with 3., we get E∗(1−u) = 0, ∀u ∈U−. Taking ∗ of this,

we get E = u−1E . Thus the image of E is fixed by U−. 2. asserts that the image of E is fixed by U+. Since U− and U+ generates G, we are
done.

�

Let us quickly explain, using linear algebra, why you can write a matrix g ∈ SL2(R) as k1ak2 with ki in SO2(R) and a being diagonal.
This fact was used to reducing the mixing in general to mixing of A. First we claim that we can write g = k1|g | where k1 is orthogonal
and |g | is symmetric. Assuming the claim, since |g | can be diagonalized under an orthogonal basis, we are done. Now let us prove
the claim. The matrix g g tr is symmetric and hence diagonalizable. Moreover it has positive eigenvalues. Hence makes sense to take
|g | :=√

g g tr . Then one defines k1 := g |g |−1 and it is direct to check that 〈k1v,k1v〉 = 〈v, v〉 for every vector v . And we are done.

4. Examples

EXAMPLE 4.1. Let G := Z generated by 1 := Rα act on R/Z by Rα · x := x +α for some real number α. Then this action preserves the
natural Lebesgue measure m on R/Z. It is ergodic iff α ∈R\Q. Moreover, this action is not mixing.

SKETCH OF PROOF. There are two proofs. Assume α ∉Q.
Either you can argue that Rα generates a dense subgroup of R/Z and then by continuity, m has to be invariant under the full R/Z.

Then argue that m is the unique R/Z-invariant probability measure.
Or you can argue that there are no invariant L2 functions by expanding them under the basis {x 7→ e2πi nx }n∈Z.
I leave it to you to show that Rα is not mixing. �

EXAMPLE 4.2. Let G := Z act on R2/Z2 where the generator 1 acts by (x, y) 7→ (x + y, x +2y). Then G preserves the natural Lebesgue
measure on R2/Z2 and the action is ergodic and mixing.

SKETCH OF PROOF. Two ways: 1. Fourier analysis; 2. use the idea presented in last section (you need something contracted by the
G action to make the argument work, what is this?). �

Let M :=
[

1 1
1 2

]
. For t ∈R, let M t := exp(t · log M). The above example is about the induced action of MZ on R2/Z2. The reason

why you have such an induced action is of course Z2 is preserved by MZ. For other t , this is not true. Nevertheless, each M t defines a
homeomorphism

R2/Z2 7→R2/M t ·Z2.

Let
X = {

(x, t )
∣∣ t ∈R/Z, x ∈R2/M t ·Z2} .

EXAMPLE 4.3. Show that X has a natural measure m. Moreover, the action of MR is ergodic but not mixing.

This example tells you that in general an ergodic B-action (that is not extendable to an SL2(R) p.m.p. action) may not be mixing.
However, this B-action is not “totally ergodic” in the sense that some infinite subgroup does not act ergodically. I do not know an
example of totally ergodic B-action that is not mixing. Note that by argument from the last section, it must be A-mixing.

5. Exercises

5.1. Non-commensurable lattices in SL2(R), II. This is a continuation of Exercise 2.1–2.6 from Exercise Sheet 2. Notations are
inherited and here are a few more:

• Let X := G/Γ and m̂X the unique G-invariant probability measure on X ;
• LetΩ be a nonempty open bounded subset of UV + (or UV −);
• Let µ̃0 be the restriction of the Haar measure on UV toΩ. Fix x0 ∈ X , letµ0 be the push-forward of µ̃0 under the map g 7→ g .x0.

By multiplying by a scalar, we normalize µ0 to be a probability measure µ̂0.

EXERCISE 5.1. Show that m̂X is A-mixing.

EXERCISE 5.2. Using mixing to show that limt→+∞(at )∗µ̂0 = m̂X .

EXERCISE 5.3. Let Y0 be as in Exer 2.3 from Exer. Sheet 2. Show that Y0 = X .

Thus we have shown that H-orbits on X are either closed or dense.
Now let Γ1, Γ2 be two discrete subgroups in SL2(R) (later we will assume them to be cocompact).

EXERCISE 5.4. The following two are equivalent

1. Γ1 ·Γ2 is closed in SL2(R);
2. H · (Γ1 ×Γ2) is closed in G.

EXERCISE 5.5. The following two are equivalent

1. Γ1 ·Γ2 is dense in SL2(R);
2. H · (Γ1 ×Γ2) is dense in G.

From now on we assume Γ1, Γ2 are both cocompact in SL2(R).

EXERCISE 5.6. The following two are equivalent

1. Γ1 ·Γ2 is closed in SL2(R);
2. Γ1 is commensurable with Γ2 (namely, Γ1 ∩Γ2 is of finite-index in both Γ1 and Γ2).

[It seems unclear to me how to prove this only assuming Γi ’s are lattices. There is an approach using random walk by Eskin–
Margulis.]

EXERCISE 5.7. The followings are equivalent
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1. Γ1 is commensurable with Γ2;
2. Γ1 · [id]Γ2 is a finite subset of SL2(R)/Γ2;
3. Γ1 ·Γ2 is not dense in SL2(R).

5.2. Totally geodesic hyperbolic planes in H3, II. Notations and assumptions are inherited from Sec.3 from Exercise Sheet 2.

EXERCISE 5.8. Show that H-orbits on G/Γ are either closed or dense.

5.3. Mixing fails for non-semisimple groups. Notations

• B = A ·U where A :=
{

at =
[

e t 0
0 e−t

]
, t ∈R

}
and U =

{
us =

[
1 s
0 1

]
, s ∈R

}
;

• H is a separable Hilbert space andΦ : B →U (H ) is a unitary representation of B .

EXERCISE 5.9. Show that if H has no non-zeroΦ(U )-fixed vector (“U -ergodic”), then for everyφ,ψ ∈H and tn →+∞, limn〈Φ(atn ).φ,ψ〉 =
0 (“A+-mixing”).

EXERCISE 5.10. Same notations and assumptions as in last exercise. Show that for everyφ,ψ ∈H and t ′n →−∞, limn〈Φ(at ′n ).φ,ψ〉 =
0 (“A−-mixing”).

Below is an example showing that “U -mixing” may not be true under the hypothesis made in last two exercises.
Let H0 := L2(R>0,Leb). Define, for t , s ∈R and φ ∈H0,

(at .φ)(x) := e tφ(e2t x), (us .φ)(x) := e2πi sx ·φ(x).

EXERCISE 5.11. Show that the above defined action of A and U extends to a group homomorphismΦ0 : B → Hom(H0,H0).

Here Hom(H0,H0) stands for linear maps from H0 to H0.

EXERCISE 5.12. Show that image ofΦ0 consists of unitary operators.

EXERCISE 5.13. Show that Φ0 defines a unitary representation of B (namely, one should check continuity w.r.t. strong operator
topology).

EXERCISE 5.14. Show directly thatΦ0 is A-mixing. Namely, for a divergent sequence (an) ⊂ A and φ,ψ ∈H0, limn〈Φ0(an).φ,ψ〉 = 0.

EXERCISE 5.15. Show that there is no non-zeroΦ0(U )-fixed vector. YetΦ0 is not U -mixing.

5.4. Another example of Mautner phenomenon. Notations

• N :=


 1 s r
0 1 t
0 0 1

 ∣∣∣∣∣∣ s, t ,r ∈R
, Z :=

zr :=
 1 0 r

0 1 0
0 0 1

 ∣∣∣∣∣∣ r ∈R
 ;

• W :=
wt :=

 1 0 0
0 1 t
0 0 1

 ∣∣∣∣∣∣ t ∈R
, U :=

us :=
 1 s 0

0 1 0
0 0 1

 ∣∣∣∣∣∣ s ∈R
 ;

• H is a separable Hilbert space andΦ : N →U (H ) is a unitary representation of N .

EXERCISE 5.16. Verify the following
wt us w−t = us z−st , ∀s, t ∈R.

EXERCISE 5.17. Show that aΦ(W )-fixed vector isΦ(Z )-fixed.

[Since W · Z is a normal subgroup of N with quotient group R, there exists a unitary representation (Φ,H ) of N and v ∈ H such
that its stabilizer in N is exactly W ·Z .]

Now let Γ be a lattice in N .

EXERCISE 5.18. Show that Γ is not commutative, and hence, not virtually commutative (namely, every finite-index subgroup of Γ is
not commutative).

EXERCISE 5.19. Show that Γ∩Z is a lattice in Z .

Let p : N → N /Z (Z is normal in N ) be the natural quotient map.

EXERCISE 5.20. Show that p(Γ) is a lattice of N /Z .

Let m̂X be the N -invariant probability measure on N /Γ and let m̂X be the N /Z -invariant probability measure on (N /Z )/p(Γ) .

EXERCISE 5.21. Show that m̂X is W -ergodic iff m̂X is W -ergodic.

EXERCISE 5.22. Fix Γ, show that there exists some one-parameter unipotent subgroup {vs } of N that acts ergodically on m̂X .

One more example.

Let G :=


 a b x
c d y
0 0 1

 ∣∣∣∣∣∣
[

a b
c d

]
∈ SL2(R), x, y ∈R

.

Γ :=


 a b x
c d y
0 0 1

 ∣∣∣∣∣∣
[

a b
c d

]
∈ SL2(Z), x, y ∈Z

.

EXERCISE 5.23. Use mixing and non-divergence of unipotent flow to show that SL2(Z) is a lattice in SL2(R).

EXERCISE 5.24. Show that Γ is a lattice in G.

Let m̂G/Γ be the unique G-invariant probability measure on G/Γ.

EXERCISE 5.25. Show that m̂G/Γ is SL2(R)-ergodic.

Here we embed SL2(R) in the left upper corner of G . By what has been proved in the class, this implies that m̂G/Γ is SL2(R)-mixing.



CHAPTER 8

Unipotent invariant finite measures on quotients of SL2(R), I

Back to the Top.
In this chapter we introduce pointwise ergodic theorem and start our discussion of classification of unipotent invariant probability

measures on quotients of SL2(R).

1. Ergodicity and extremality

Unless otherwise specified, we assume G and X are nice. So G is a locally compact and σ-compact metrizable group and X is a
σ-compact locally compact metrizable space. The space of probability measures Prob(X ) with the weak∗ topology is not necessarily
compact (unless X is compact) but the Meas(X )≤1 is. And Meas(X )≤1, Prob(X ) and LFM(X ) are also nice (decompose X into countable
union of compact pieces and consider probability or finite measures supported on finite unions of them).

LEMMA 1.1. A G-invariant probability measure µ is ergodic iff it is extremal in the space of G-invariant probability measures. Or
more succinctly, Prob(X )G ,Erg = Extre(Prob(X )G ).

Being extremal means that µ can not be written as convex combination of different invariant probability measures. That is to say,
if µ= aν1 + (1−a)ν2 for some a ∈ (0,1) and νi ∈ Prob(X )G , then ν1 = ν2 =µ. In particular, two different ergodic µ1,µ2 must be singular
w.r.t. each other. Namely, we may partition X = AtB into two measurable parts such that µ1(B) = 0 and µ2(A) = 0.

SKETCH OF PROOF. If µ is not ergodic, then we can pick two complementary invariant measurable sets. Then µ is the sum of the
restriction of µ to these two sets and is not extremal. Conversely, if µ= aν1 + (1−a)ν2 then ν1 and ν2 are absolutely continuous w.r.t.

µ. So we find two G-invariant L1(µ)-functions representing “ dνi
dµ " which are forced to be constants unless µ is not ergodic. �

By general facts from functional analysis (Hahn–Banach theorem), the convex combinations of Extre(Prob(X )G ) are dense in
Prob(X )G (pretend X to be compact first and then do the general case). A theorem of Choquet says that more precisely (See Thm.4.8
and 8.20 of the book of Einsiedler–Ward [EW11]),

THEOREM 1.2 (Ergodic decomposition). For every µ ∈ Prob(X )G there exists a unique Borel probability measure λ ∈ Prob(Prob(X )G )
such that

• λ(Prob(X )G ,Erg) = 1;
• µ= ∫

ν∈Prob(X )G ,Erg νλ(ν).

Let me add that Prob(X )G ,Erg is not closed in general (Exercise: find such an example) but in the world of unipotent flows, this is
closed due to a theorem of Mozes–Shah.

In virtue of this theorem, to classify invariant probability measures, we often start with ergodic ones.

2. Pointwise ergodic theorem for a flow

We can construct a new invariant probability measure from known ones by convex combination. But how to get one to start with?
Well, in general such a measure may not exist (say, the SL2(R)-action on the space of lines of R2). But for a flow, namely a continuous
R-action (denote the action R×X → X by (t , x) 7→ Tt .x) on a nice X , we can consider

1

T

∫ T

0
(Tt )∗δx dt = 1

T

∫ T

0
δTt .x dt

as T →+∞. Here δx denotes the measure defined by δx (E) = 1 iff x ∈ E and is zero otherwise. You can replace the δ-measure supported
on {x} by any other probability measure. Using this construction, one shows that

LEMMA 2.1. Let (Tt )t∈R be a flow on X . If further assume X is compact, then there exists a (Tt )-invariant probability measures.

Conversely, every ergodic flow-invariant probability measure may be constructed this way from a delta measure. Actually, more is
true. This is the pointwise ergodic theorem.

THEOREM 2.2. Let Tt denote the action of R on a nice space X . Let µ be an ergodic Borel probability (Tt )-invariant measure on X .
Then for every f ∈ L1(X ,BX ,µ) there exists a measurable set E f of full measure (µ(E f ) = 1) such that for every x ∈ E f we have

(27) lim
T→+∞

1

T

∫ T

0
f (Tt .x)dt =

∫
f (x)µ(x).

Using the fact that Cc (X ) admits a countable dense subset for a nice X , a diagonal argument shows that

COROLLARY 2.3. Assumption as in the above theorem. There exists a full measure set E such that for every x ∈ E,

(28) lim
T→+∞

1

T

∫ T

0
(Tt )∗δx dt =µ

where the limit is taken with respect to the weak∗ topology.

There is no such general ergodic theorem beyond the world of amenable groups.
A point x satisfying Equa.(27) (or (28)) is sometimes called f-generic (or generic). To emphasize both the group action and the

invariant measure, one may also call x a (Tt ,µ)-generic point. In general, it may be very difficult to describe the set of generic points.
One beauty of unipotent flows is that you do have an explicit description of generic points in this case.
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3. Ergodic measures for unipotent flows

Let us start with the easiest case.

DEFINITION 3.1. Given a continuous action of G on X . We say that the action is uniquely ergodic iff the action admits a unique
invariant probability measure.

THEOREM 3.2. Let Γ be a discrete subgroup of SL2(R), then there exists a unique up-to-a-scalar SL2(R)-invariant locally finite mea-
sure mX on X := SL2(R)/Γ.

A reference is Raghunathan’s book [Rag72]. For existence and uniqueness of invariant (Haar) measures on a (nice) topological
group, one may consult [DE14].

Thus when such a measure is finite, we get an example of uniquely ergodic action.

LEMMA 3.3. Assume a flow Tt on a compact space X is uniquely ergodic with the unique invariant probability measure denoted by
µ, then for every x ∈ X, Equa.(28) holds.

Proof is left as an exercise. You can not drop the compactness assumption.
Now we go to the world of unipotent flows. Some notations:

• G := SL2(R), Γ is a discrete subgroup of G and X := G/Γ.

• U :=
{

us :=
[

1 s
0 1

] ∣∣∣∣ s ∈R
}

, A :=
{

at :=
[

e t 0
0 e−t

] ∣∣∣∣ t ∈R
}

;

• B := A ·U.

THEOREM 3.4. Assume Γ is cocompact in G. Then the U-action on X is uniquely ergodic.

The existence is guaranteed. One needs to prove the uniqueness. This result is due to Furstenberg [Fur73].
A more general result is

THEOREM 3.5. Let Γ be a discrete subgroup of G. Then every µ ∈ Prob(X)U,Erg is one of the following:

1. supported on a closed (necc. compact) U-orbit;
2. mX/|mX| with |mX| <∞.

In particular, if X has no compact U-orbit and |mX| = mX(X) is not finite, then there is no finite U-invariant measure. Though this
does not prevent the existence of dynamically interesting infinite U-invariant measures.

A reference for the material presented here is Ratner’s paper [Ra92].

4. Outline of the proof and step 1

The proof of Thm.3.5 to be presented here consists of two parts

Step 1. Upgrade from U-invariance to B-invariance if the measure is not supported on a compact U-orbit.
Step 2. Show that the action of B is uniquely ergodic unless mX is infinite.

The first step is essentially achieved by a combination of ideas from Ch.1 and pointwise ergodic theorem. It might be possible to do
the second step by a duality argument in the style of Ch.1. We will do something different.

4.1. Step 1. Compared to Ch.1 we will do the following adjustment

compact topological spaces −→ probability invariant measures

minimal sets −→ generic points

We shall actually use compact subsets of generic points so that we can take limits.

LEMMA 4.1. Let µ be an ergodic U-invariant probability measure on X, then

1. either µ is supported on a closed U-orbit;
2. or µ is B-invariant.

Before the proof we make the following observation

LEMMA 4.2. If x, y are both (U,µ) generic points and y = g .x with g ∈ G normalizing U, then g∗µ=µ.

PROOF. Since g ∈ G normalizes U, we find some constant cg > 0 such that g ut g−1 = ucg t . By definition of genericity we have

g∗µ=g∗ lim
T→+∞

1

T

∫ T

t=0
(ut )∗δx dt = lim

T→+∞
1

T

∫ T

t=0
g∗(ut )∗δx dt

= lim
T→+∞

1

T

∫ T

t=0
(ucg ·t )∗g∗δx dt = lim

T→+∞
1

T

∫ T

t=0
(ucg ·t )∗δy dt =µ.

�

PROOF OF LEMMA 4.1. Without loss of generality assume µ is not supported on a closed U-orbit. In light of Lem.4.2 above, we
hope to find a pair x, y that are both (U,µ)-generic and y = at .x with t 6= 0; and by varying the pair, we want t to be arbitrarily close to 0.

Recall that the argument from Ch.1 basically goes like:

Step 1. find two sequences (xn) and (yn) with d(xn , yn) → 0 and for each n, xn and yn are not on the same local U-orbit;
Step 2. if for infinitely many n, xn and yn are on the same local B-orbit, then we are done;
Step 3. otherwise, depending on δ> 0, we find sn , tn such that every limit pair (x∞, y∞) of x ′

n := utn xn and y ′
n := usn yn are differed by

some at with t ∈ [C−1δ,Cδ] for some constant C > 1;
Step 4. as a complement to Step 3, it should be noted that the choice of sn is determined by tn and the choice of tn has the freedom

of multiplying by a (multiplicatively) bounded number. This havs the effect of changing the C in step 3 by another C ′;
Step 5. so far we have demonstrated at with |t |→ 0, t 6= 0 with at ∈ Gµ, the stabilizer of µ in G. Since Gµ is a closed subgroup, A ⊂ Gµ.
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Below is a detailed account of carrying out the above strategy in the measure theoretic setting. You may try to figure out how by
yourself.

We need to guarantee the limits (x∞, y∞) to be generic. Since the set of generic points is usually not closed, we define

EU,µ :={
(U,µ)-generic points

}
and take E to be a compact subset of EU,µ such that µ(E) > 0.9.

Take T0 large enough such that the following set

(29) F :=
{

x ∈ X

∣∣∣∣ 1

T
Leb{t ∈ [0,T ],ut .x ∈ E } ≥ 0.9, ∀T ≥ T0

}
has µ(F ) > 0.9. (how? First by ptws ergodic theorem applied to the indicator function of E , we see that{

x ∈ X

∣∣∣∣ lim
T→+∞

1

T
Leb{t ∈ [0,T ],ut .x ∈ E } =µ(E) > 0.9

}
has full measure 1. Thus as S varies over positive integers, the increasing union of the following sets

FS :=
{

x ∈ X

∣∣∣∣ 1

T
Leb{t ∈ [0,T ],ut .x ∈ E } > 0.9, ∀T ≥ S

}
has measure 1. Thus we can find some T0 such that FT0 has measure at least 0.9. )

We claim that there exist pairs (x, y) in F arbitrarily close to each other and yet not on the same local U-orbit (unless µ is supported
on a compact U-orbit, which by assumption does not happen).

To be precise, two points x, y are said to be on the same local U-orbit if x = us .y for some s ∈ (−1,1).
If the claim were not true, then there exists ε > 0 such that if x, y ∈ F and d(x, y) < ε then x = us y for some |s| < 1. Cover F by

countably many measurable sets {Bi } of diameter smaller than ε. Then Bi ∩F ⊂ u(−1,1).xi for some xi . So F ⊂ ⋃
i u(−1,1).xi . Thus for

some xi ,

µ({us .xi | |s| < 1}) > 0.

By ergodicity this implies that U.x has to close up (you can invoke ptws ergodic theorem to prove this but you do not have to) and that
µ is the U-invariant measure supported on this orbit. Contradiction.

Recall calculation from Ch.1, with s + t replaced by t ,

(30) ut Anu−1
s =

[
1+an + tcn bn + s(dn −an)− s2cn + (t − s)(1+dn − scn)

cn 1+dn − scn

]
for

An =
[

1+an bn

cn 1+dn

]
with an ,bn ,cn ,dn → 0.

Compared to Ch.1, let us make a little adjustment on the choice of sn,δ and particularly tn,δ to simplify matters. Assume cn 6= 0. For a
small number δ> 0, choose sn,δ as before, namely,

sn,δ := dn +δ
cn

(choosing s = (dn −δ)/cn is also ok). We also need an additional parameter λ = λn,δ ∈ (0.1,1) to be determined in a moment. Let
s′n,δ :=λn,δsn,δ. Choose t ′n,δ :=φn,δ(λn,δ) · s′n,δ where

(31) φn,δ(λn,δ) := an − (1−λn,δ)dn +λn,δδ

1+ (1−λn,δ)dn −λn,δδ
+1 = (an −dn)+ (dn +δ)λn,δ

(1+dn)− (dn +δ)λn,δ
+1.

This choice is such that the upper right corner of Equa.(30) converges to 0 asymptotically. Indeed with λ=λn,δ, s = s′n,δ and t = t ′n,δ we
have

bn + s(dn −an)− s2cn + (t − s)(1+dn − scn)

(scn = dn +δ) =bn + s(dn −an)− sλ(dn +δ)+ (t − s)(1+dn)− (t − s)λ(dn +δ)

(Equa.(31)) =bn + s(−an +dn −λdn −λδ)+ (t − s)(1+dn −λdn −λδ) = bn → 0.

Let us firstly cheat by assuming φn,δ(λn,δ) ≡ 1 in Equa.(31). See Sec.4.2 below to see the true proof. We have

s′n,δ = t ′n,δ =λn,δsn,δ.

Take δ> 0 and n large enough such that sn,δ > T0. Then by the definition of F (see Equa.(29)),

(32)
Leb

({
λ ∈ (0.1,1)

∣∣∣ uλsn,δ
.xn ∈ E

})
> 0.9−0.1 = 0.8;

Leb
({
λ ∈ (0.1,1)

∣∣∣ uλsn,δ
.yn ∈ E

})
> 0.9−0.1 = 0.8.

In particular, their intersection is nonempty and we take some elementλn,δ. Define x ′′
n,δ := us′n,δ

.xn and y ′′
n,δ := us′n,δ

.yn , then x ′′
n,δ, y ′′

n,δ ∈
E . By letting n →+∞ (pass to a subsequence if necessary) and by Equa.(30) above, we get

y∞,δ =
[

(1−λ∞,δδ)−1 0
0 1−λ∞,δδ

]
x∞,δ

where x∞,δ := lim x ′′
n,δ ∈ E , y∞,δ := lim y ′′

n,δ ∈ E and λ∞,δ := limλn,δ ∈ [0.1,1]. So we get a sequence of non-identity elements in A
converging to id that maps some generic point (x∞,δ) to another one (y∞,δ). By Lem.4.2, they are contained in Gµ, which is a closed
subgroup. Thus A is contained in Gµ and the proof completes.

Finally, here is a summary-by-picture:
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�

4.2. To avoid cheating... Here is the honest proof.
As functions on [0,2] indexed by n,δ, we can check that as n →∞ and δ→ 0, the functions φn,δ (resp., their derivatives) converge

to the constant 1 (resp., 0) uniformly. Thus for n sufficiently large and δ sufficiently small, we may and do assume that

φn,δ(λ) ∈ [0.99,1.01], φ′
n,δ(λ) ∈ [−0.01,0.01], ∀λ ∈ [0,2].

Let ψn,δ(λ) :=φn,δ(λ) ·λ. For n large and δ small,

(33) ψ′
n,δ(λ) =φ′

n,δ(λ) ·λ+φn,δ(λ) ∈ [0.97,1.03], ∀λ ∈ [0,2].

So ψ=ψn,δ defines a diffeomorphism from [0.1,1] →ψ([0.1,1]). Note that

(34) [0.15,0.95] ⊂ψ([0.1,1]) ⊂ [0.05,1.05].

Let (abbr. ψ :=ψn,δ and s := sn,δ)

(35)

A :={
λ ∈ [0.1,1]

∣∣ uψ(λ)s .yn ∈ E
}

=⇒ψ(A) = {
λ ∈ψ([0.1,1])

∣∣ uλs .yn ∈ E
}

;

B := {λ ∈ [0.1,1] | uλs .xn ∈ E } .

By Equa.(32) and (34), we have Leb(ψ(A)),Leb(B) ≥ 0.8−0.1 = 0.7. Also, by Equa.(33), for every z ∈ A,
∣∣ψ′(z)

∣∣−1 ≥ 1.03−1. Therefore,

Leb(A) =
∫

1A(x)dx =
∫

1A(ψ−1 y)
∣∣(ψ−1)′(y)

∣∣dy

=
∫

1ψ(A)(y)
∣∣ψ′(ψ−1 y)

∣∣−1
dy ≥ 0.7 ·1.03−1 ≥ 0.6.

Consequently, A∩B 6= ; and we choose some λn,δ ∈ A∩B . As above, define s′n,δ :=λn,δ ·sn,δ and t ′n,δ =φn,δ(λn,δ)·s′n,δ =ψn,δ(λn,δ)·sn,δ.

By Equa.(35), x ′′
n,δ := us′n,δ

.xn and y ′′
n,δ := us′n,δ

.yn belongs to E . The rest of the proof is the same as those below Equa.(32).

Now we have completed Step 1.

5. Exercises

5.1. Lattices and closedness of orbits.

• G is a connected Lie group and Γ is a discrete subgroup of G ;
• H ≤G is a closed subgroup.

EXERCISE 5.1. Assume H ∩Γ is a lattice in H. Show that for a divergent sequence (xn) in H/H ∩Γ, InjRad(xn) → 0.

EXERCISE 5.2. Assume Γ satisfies the conclusion of the last exercise. Show that HΓ/Γ is closed in G/Γ.

• U =
{

us =
[

1 s
0 1

]
, s ∈R

}
, Γ is a discrete subgroup of SL2(R).

EXERCISE 5.3. Assume U ∩Γ is cocompact in U , by duality we know that ΓU /U is closed in SL2(R)/U . The latter is homeomorphic
to R2 − (0,0) under g 7→ g .e1. Thus Γ.e1 is closed in R2 − (0,0). Show that, in fact, Γ.e1 is closed in R2.

EXERCISE 5.4. Show that the conclusion might fail if we replace “U ∩Γ is cocompact in U ” by “UΓ is closed in SL2(R)”.

EXERCISE 5.5. Show that B = A ·U with A :=
{

at =
[

e t 0
0 e−t

]
, t ∈R

}
has no lattice.

5.2. More exercises.

EXERCISE 5.6. Let Γ be a lattice in SL2(R), and assume Γ is not cocompact in SL2(R). Let X := SL2(R)/Γ. Let d be a right invariant
Riemannian metric on SL2(R), which induces a quotient Riemannian metric dX on X , from which we can define a (volume) measure on
X . Accept the fact that such a measure is necessarily the SL2(R)-invariant finite measure on X . Show that a sequence (xn) ⊂ X goes to ∞
iff InjRad(xn) → 0 as n →∞.

EXERCISE 5.7. Assume the notations and the conclusion of the exercise above. Show that (gnΓ/Γ) ⊂ X goes to ∞ iff there exists γn ∈ Γ
such that dist(id, gnγn g−1

n ) → 0.
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EXERCISE 5.8. For a matrix X = (xi , j ), let ‖X ‖sup := supi , j

∣∣xi , j
∣∣. By a direct computation, show that there exists a constant C > 0,

such that for every ε> 0 and X ,Y ∈ SL2(R) with ‖id−X ‖ ≤ ε and ‖id−Y ‖ ≤ ε, we have that∥∥id−X Y X −1Y −1∥∥≤C ·ε2.

EXERCISE 5.9. Notations as in the exercise above. Show that there exists a neighborhood N of id in SL2(R) such that for every discrete
subgroup Γ≤ SL2(R), Γ∩N generates an abelian group.

EXERCISE 5.10. Notations as in the exercise above. Show that there exists a neighborhood N ′ of id in SL2(R) such that for every
discrete subgroup Γ≤ SL2(R), there exists g ∈ SL2(R) such that gΓg−1 ∩N ′ = {id}.

EXERCISE 5.11. Let Γ in SL2(R) be a lattice. Use previous exercises to show that Γ is not cocompact iff it contains non-identity
unipotent matrices.

REMARK 5.1. The “if” direction is proved in the class. This is a special instance of Kazhdan–Margulis theorem.

EXERCISE 5.12. Let at :=
[

e t 0
0 e−t

]
and us :=

[
1 s
0 1

]
. In the class we have seen that for a discrete subgroup Γ ≤ SL2(R), if

x ∈ SL2(R)/Γ belongs to a compact us -orbit, then at .x diverges as t goes to −∞. Now assume Γ is a lattice. Show that the converse holds.
Namely, if at .x diverges as t goes to −∞, then {us .x}s∈R is compact.





CHAPTER 9

Unipotent invariant finite measures on quotients of SL2(R), II

Back to the Top.
In this chapter we complete “step 2” from the last chapter. To do this we need the notion of conditional measures.

1. Conditional measures

As a reference, see [EW11, Ch.5] and [Cou16, Part IV and Ch.17].
Let X be a nice space and BX be its Borel σ-algebra. Let µ ∈ Prob(X ). Let A be a countably generated sub-σ-algebra of BX . Being

countably generated means that, by definition, there exists a countable collection of measurable subsets Gene(A ) = {Ai } of X such
that A is the smallest sub-σ-algebra containing them. Assume the complement of every Ai is also contained in Gene(A ). For x ∈ X ,
let the atom containing x be [x]A :=⋂

Ai3x Ai .

LEMMA 1.1. Actually [x]A =⋂
A3x, A∈A A, hence [x]A is independent of the choice of a (symmetric) countable generator Gene(A ).

Proof is left as an exercise.

THEOREM 1.2. (Conditional measures) Let (X ,BX ,µ) and A be as above.
1. Existence of conditional measures.

There exists X ′ ∈A of full measure and a measurable map X ′ → Prob(X ) denoted as x 7→µA
x such that µA

x ([x]A ) = 1 and

(36)
∫

A

∫
f (y)µA

x (y)µ(x) =
∫

A
f (x)µ(x)

for every A ∈A and f ∈ L1(X ,BX ,µ). Implicitly we have claimed that x 7→ ∫
f (y)µA

x (y) is integral on A.
2. Uniqueness of conditional measures.

If x 7→ νA
x is another measurable map from a possibly different full measure subset X ′′ to Prob(X ) satisfying Equa.(36) for every

compactly supp. cont. function f ∈Cc (X ) and A = X ′′, then for some full measure set X ′′′ ⊂ X ′∩X ′′ we have µA
x = νA

x for x ∈ X ′′′.

EXAMPLE 1.3. Let A =BX . Then [x]A = {x} and µA
x = δx for every x ∈ X .

EXAMPLE 1.4. Let A be the sigma algebra generated by a finite measurable partition {P1, ...,Pl } ⊂BX of X , then [x]A = Pi iff x ∈ Pi

and µA
x = µ|Pi

µ(Pi ) .

EXAMPLE 1.5. Let X = [0,1]×[0,1] andµ= Leb be the standard Lebesgue measure defined by |dx∧dy |. Let A := {
A× [0,1]

∣∣ A ∈B[0,1]
}
.

Then for every (x, y) ∈ X , [(x, y)]A(x,y) = {x}× [0,1] and µA
(x,y) is induced by |dy |.

This example can be generalized to foliations on manifolds where X is a small open set with a local foliation chart, which provides
A .

EXAMPLE 1.6. Everything same as in the last example except that we let µ be the standard Lebesgue measure supported on ∆ :=
{(x, x), x ∈ [0,1]}. Then [(x, y)]A(x,y) = {x}× [0,1] and µA

(x,y) = δy .

EXAMPLE 1.7. If you have a probability measure preserving map π : (X ,BX ,µ) → (Y ,BY ,ν) with X ,Y nice. Let A :=π−1BY . In this
case, Equa.(36) can be viewed as a “fibre integration formula” (you can replace the µ on the LHS by ν). Here atoms are fibres of π. In some
sense, all countably generated sub σ-algebra A arises from such a π.

EXAMPLE 1.8. Let G , X both be nice and assume G preserves µ. Let

A := {A ∈BX | A is almost G-invariant } .

A measurable subset A is almost G-invariant if µ(g .A∆A) = 0 for all g ∈ G. Then Equa.(36) provides an explicit form of ergodic decom-
position.

2. Step 2 of the measure classification

Notations:

• G := SL2(R), Γ is a discrete subgroup of G and X := G/Γ.
• let mX be a G-invariant locally finite measure on X and let m̂X := mX

mX(X) if mX(X) <+∞;

• U :=
{

us :=
[

1 s
0 1

] ∣∣∣∣ s ∈R
}

, A :=
{

at :=
[

e t 0
0 e−t

] ∣∣∣∣ t ∈R
}

;

• B := A ·U;

• V :=
{

vs :=
[

1 0
s 1

] ∣∣∣∣ s ∈R
}

.

Recall that we are left to prove the following.

THEOREM 2.1. If there exists a B-invariant, U-ergodic probability measure µ on X, then Γ is a lattice and µ is equal to m̂X.

By the discussion from Chapter 7, we have the following

LEMMA 2.2. Same assumption. The measure µ is ergodic (actually mixing) with respect to aZ-action for every a 6=id ∈ A.

51
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Let µ be a B-invariant, a-ergodic probability measure. Here a is a fixed element of A such that an va−n → id as n →+∞ for every
v ∈ V. We need to show that µ coincides with the mX (up to a scalar) and in particular, mX is finite.

Fix some o in the support of µ. Choose (symmetric) neighborhoods of identity N B
ε (resp., N V

ε ) in B (resp., V) that are very small
compared to the injectivity radius at o. We say two points x, y are on the same local B (resp., V) orbit iff x ∈ N B

ε .y (resp., x ∈ N V
ε .y).

Choose δ> 0 even smaller compared to ε.
Let

Gene( f ,µ) :=
{

x ∈ X

∣∣∣∣∣ lim
N→+∞

1

N

N∑
n=1

f (an x) =
∫

f (y)µ(y)

}
.

Note that this set is V ·A-invariant. Let E f be its intersection with Nδ(o).
We define a sub-σ-algebra A on Nδ(o) by specifying its atoms: x and y belong to the same atom iff x and y are on the same local

B-orbit. Let E ′
f ⊂ E f be those x such that the conditional measure µA

x is the restriction of some (left-)B-invariant measure when we

identify [x]A as a subset of N B
ε ⊂ B via the orbit map. Then µ being B-invariant, E ′

f is a conull set in E f . Let Ẽ f consist of elements in

Nδ(o) that are on the local V-orbit of some element in E ′
f . Thus Ẽ f is conull in Nδ(o) with respect to µ and mX.

As an exercise, the reader is invited to fill in the various missing details here. Consult Sec.3 if it helps. Here is a picture.

Now we are ready to conclude the proof.
First assume mX <∞. Every point x ∈ Ẽ f is a-generic for µ. But since the aZ-action on mX is also ergodic and mX(Ẽ f ) > 0, we can

find a point x ∈ Ẽ f generic for mX. Thus
∫

f (x)µ(x) = ∫
f (x)mX(x) by pointwise ergodic theorem. Since f is arbitrary we are done.

Now assume mX = ∞. Then the associated unitary representation is absence of constants. Thus by mixing, for every φ,ψ ∈
L2(X,mX), we have

lim
n→∞

∫
φ(an .x)ψ(x)mX(x) = 0.

Take φ= f and ψ= 1Ẽ f
, then

lim
n→∞

∫
Ẽ f

f (an .x)mX(x) = lim
n→∞

∫
f (an .x)1Ẽ f

(x)mX(x) = 0.

Let us compute, for f ∈Cc (X),

mX(Ẽ f )
∫

f (x)µ(x) =
∫

Ẽ f

(
lim

N→∞
1

N

N−1∑
n=0

f (an .x)

)
mX(x)

(bounded convergence thm) = lim
N→∞

1

N

N−1∑
n=0

(∫
Ẽ f

f (an .x)mX(x)

)
= 0,

which is impossible if f > 0 at some point in Supp(µ). Hence mX =∞ leads to a contradiction. See [Ra92, Page 27,28] for an alternative
way of concluding the proof.

3. More details on locally invariant measures

Let G be a Lie group and Ω ⊂ G be a nonempty open subset. A measure µ on Ω is said to be locally left invariant under G iff for
every measurable subset A ⊂Ω and g ∈G such that g A ⊂Ω, we have µ(g A) =µ(A).

LEMMA 3.1. A locally left invariant locally finite measure µ is the restriction of some left G-invariant measure on G.

PROOF. Fix a countable set (gi )i∈Z≥0 in G such that G =⋃
gi .Ω. Assume g0 = id.

A0 :=Ω, A1 := g1.Ω\Ω, A2 := g2.Ω\ (Ω∪ g1Ω)....

Then G =⊔
i∈Z≥0 Ai .

Define a measure µ′ on G by

(37) µ′(E) := ∑
i≥0

µ(g−1
i (E ∩ Ai ))

for every measurable subset E . Then one can prove that µ′ is left G-invariant. Here are more details.
Take g ∈G . For simplicity let Ei := E ∩ Ai , then

µ′(g .E) =∑
j
µ′(g .E j ) =∑

i , j
µ(g−1

i (g .E j ∩ Ai )).

Note that g−1
i (g .E j ∩ Ai ) ⊂Ω and (g ◦ g j )−1(g .E j ∩ Ai ) ⊂Ω. By local left-invariance we get

µ(g−1
i (g .E j ∩ Ai )) =µ(g−1

j g−1(g .E j ∩ Ai )).

Note that ⊔
i

g−1
j g−1(g .E j ∩ Ai ) = g−1

j g−1(g .E j ) = g−1
j .E j .
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Thus from Equa.(37) we get
µ′(g .E) =∑

i , j
µ(g−1

j g−1(g .E j ∩ Ai )) =∑
j
µ(g−1

j .E j ) =µ′(E).

So we are done.
�

To check local-invariance, the following is helpful.

LEMMA 3.2. Let δ> 0. LetΩ be a connected open subset of G and µ be a measure onΩ. Assume µ is locally invariant with respect to
g ∈Nδ(id) ⊂G. Then µ is locally invariant.

Note that being open connected and being open path-connected is equivalent for a subset of a manifold.

PROOF. Fix a countable dense subset {εi } of Nδ(id). For every g ∈G , the collection of finite-length words in {εi } representing g is a
countable set, we may index it by Z≥1. More precisely,

W (g ) := {
wk : {1,2, ..., l } → {εi }

∣∣ l ,k ∈Z≥1, wk (l ) · ... ·wk (1) = g
}

Write lk for the length of the word wk . Let E ⊂Ωwith g .E ⊂Ω. We need to show µ(E) =µ(g .E). Now for every w ∈W (g ), consider

E1 := {x ∈ E | w1(k) · ... ·w1(1).x ∈Ω, ∀k = 1, ..., l1}

E2 := {x ∈ E \ E1 | w2(k) · ... ·w2(1).x ∈Ω, ∀k = 1, ..., l2}

....

Then Ei ’s are disjoint from each other. Moreover, sinceΩ is path-connected and {εi } is dense in Nδ(id), we have

E = ⊔
i∈Z≥1

Ei .

Moreover for each i ,
µ(Ei ) =µ(wi (1).Ei ) =µ(wi (2)wi (1).Ei ) = ... =µ(g .Ei ).

Therefore,
µ(E) =∑

µ(Ei ) =∑
µ(g .Ei ) =µ(g .E).

�

4. Exercises





CHAPTER 10

Equidistribution of unipotent flows on quotients of SL2(R)

Back to the Top.
Notations

• X2 := {
unimodular lattices in R2

}∼= SL2(R)/SL2(Z), G := SL2(R);

• U :=
{

us :=
[

1 s
0 1

] ∣∣∣∣ s ∈R
}

; A :=
{

at =
[

e t 0
0 e−t

] ∣∣∣∣ t ∈R
}

;

• m̂X2 is the SL2(R)-invariant probability measure on X2;
• Prim(Λ) is the set of non-zero primitive vectors inΛ forΛ≤R2 discrete;
• Prim1(Λ) is the set of rank-1 primitive subgroups ofΛ.

1. Equidistribution on the modular surface

In this section, we illustrate the idea of [DS84] in the case X2. The general case will be discussed in Sec.3.

THEOREM 1.1. LetΛ0 ∈ X2 be such that U.Λ0 is not compact. Then

lim
S→+∞

µS := lim
S→+∞

∫ S

0
(us )∗δΛ0 ds = m̂X2 .

Consider
T := {

Λ ∈ X2
∣∣ U.Λ is compact

}
.

LEMMA 1.2. The set of compact U-orbits is a tube: T = {at us ·Z2, t ∈ R, s ∈ R/Z}. And U.Λ is compact iff Λ contains a non-zero
horizontal vector.

This has been proved in Chapter 4.
Our proof of Thm.1.1 decomposes as:

Step 1. Passing to a subsequence, assume the limit of (µS )S exists and call it µ. Thanks to the non-divergence theorem (see Ch.4), we
also know µ is a probability measure.

Step 2. Also µ is readily seen to be U-invariant since it comes from an averaging process.
Step 3. Show µ(T ) = 0.
Step 4. Use the ergodic decomposition to conclude.

Details of Step 1 and 2 are left as an exercise. Let us take up Step 3.

PROOF OF STEP 3. Fix t1 < t2, let
T[t1,t2] := {

at us .Z2, t ∈ [t1, t2], s ∈R/Z
}

.

Thus it suffices to show that µ(T[t1,t2]) = 0 for all −∞< t1 < t2 <+∞. By the definition of weak∗ convergence, it suffices to find an
open neighborhood Nε, for every ε> 0, of T[t1,t2] such that limsupµS (Nε) ≤ ε. Letting ε→ 0 the finishes the proof.

This will be achieved by Thm.1.5 below. �

Note that usΛ0 being close to T[t1,t2] means that, for certain v ∈ Prim(Λ0), we have us .v is close to

A[t1,t2] := {at us .e1 | t ∈ [t1, t2], t ∈R} = [e t1 ,e t2 ]× {0}.

For C ,δ> 0, consider the box
BoxC ,δ := [−C ,C ]× [−δ,δ].

Define
I (C ,δ) := {

s ≥ 0
∣∣ Prim(us .Λ0)∩BoxC ,δ 6= ;}

.

For Zv ∈ Prim1(Λ0), consider
I (C ,δ,Zv) := {

s ≥ 0
∣∣ us .v ∈ BoxC ,δ

}
.

Since −BoxC ,δ = BoxC ,δ, this is independent of the choice of the generator of Zv . From the definition,

(38) I (C ,δ) = ⋃
Zv∈Prim1(Λ0)

I (C ,δ,Zv).

The key observation is that

LEMMA 1.3. Assume δ ·C ≤ 0.1. Then for two Zv 6=Zw ∈ Prim1(Λ0), I (C ,δ,Zv)∩ I (C ,δ,Zw) =;. In other words, Equa.(38) above is
a disjoint union when δ ·C ≤ 0.1.

PROOF. Otherwise the lattice us .Λ0 would contain two linearly independent vectors v, w in [−C ,C ]× [−δ,δ]. Thus the triangle
spanned by v, w is also contained in [−C ,C ]× [−δ,δ], implying ‖v ∧w‖ ≤ 2(4Cδ) < 1. This contradicts against the assumption Λ0 is
unimodular. �

For ε> 0, define
C1(ε) := ε−1, δ1(ε) := 0.1ε.

For every Zv ∈ Prim1(Λ0), there are three cases

Case 1. I (C1(ε),δ1(ε),Zv) =;;
Case 2. I (C1(ε),δ1(ε),Zv) 6= ; and Zv *Re1; in this case I (C1(ε),δ1(ε),Zv) =R≥0;
Case 3. I (C1(ε),δ1(ε),Zv) 6= ; and Zv *Re1; in this case I (C1(ε),δ1(ε),Zv) is a closed interval of the form [av ,bv ].

Case 2 is excluded sinceΛ0 contains no non-zero horizontal vector by assumption (see Lem.1.2).
Now take S > 0, there are sub-cases for case 3:

55
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3.1 S < av or bv < 0; in this case [0,S]∩ I (C1(ε),δ1(ε),Zv) =;;
3.2 av ≤ 0 ≤ bv ≤ S; in this case [0,S]∩ I (C1(ε),δ1(ε),Zv) = [0,bv ];
3.3 0 < av ≤ bv < S; in this case [0,S]∩ I (C1(ε),δ1(ε),Zv) = [av ,bv ];
3.4 0 ≤ av ≤ S ≤ bv ; in this case [0,S]∩ I (C1(ε),δ1(ε),Zv) = [av ,S];
3.5 [0,S] ⊂ [av ,bv ].

PROPOSITION 1.4. Take C2 satisfying 1 <C2 < 0.5C1(ε) = 0.5ε−1. Then

limsup
S→+∞

1

S
Leb(I (C2,δ1(ε))∩ [0,S]) ≤ 4C2ε.

From the proof it will be clear that the inequality holds for S large enough without taking the limit.
Only case 3.2, 3.3 and 3.4 above will contribute, for which we have three lemmas Lem.2.2, 2.1, and 2.3 below.

PROOF. If every Zv ∈ Prim1(Λ) falls in case 1 or case 3.1 (for every S > 0), then LHS in Prop.1.4 is zero and the inequality trivially
holds. Otherwise, find S > 0 large enough such that for some Zv ∈ Prim1(Λ), we are in case 3.2−3.5. By choosing S larger, case 3.5 can
be excluded.

Leb(I (C2,δ1(ε))∩ [0,S]) =
∣∣∣∣ ⊔

v∈case3
[0,S]∩ I (C2,δ1(ε),Zv)

∣∣∣∣
(Lem.2.2, 2.1, 2.3 ) ≤ 4C2ε ·

∑ |[0,S]∩ I (C1(ε),δ1(ε),Zv)| ≤ 4C2ε ·S

�

Now we can prove:

THEOREM 1.5. For every ε> 0, there is a neighborhood Nε of Tt1,t2 such that

limsup
S→+∞

µS (Nε) ≤ ε.

Consequently for every limit point µ of (µS ) , µ(Tt1,t2 ) = 0.

PROOF. Take C2 > 1, depending on t1, t2, such that BoxC2,δ1(ε) contains [e t1 ,e t2 ]× {0}. Let ε′ := ε
4C2

. When ε > 0 is small enough,

C2 < 0.5(ε′)−1. Define Nε to be those lattices whose primitive vectors intersect non-trivially with BoxC2,δ1(ε′). Then Prop.1.4 concludes
the proof. �

Thus we have completed Step 3.

PROOF OF STEP 4. Say we have a U-invariant probability measure µ with µ(T ) = 0. By classification of ergodic U-invariant prob-
ability measures ν on X (see Ch.4 Thm.3.5), either ν is supported on T or ν= m̂X2 . Let

µ=
∫

Prob(X2)U,Erg
νλ(ν)

be the ergodic decomposition of µ, then

0 =µ(T ) =
∫
ν(T )λ(ν).

Thus λ-almost every ν, ν(T ) = 0 =⇒ ν= m̂X2 . So µ= m̂X2 . �

2. Supplementary lemmas

LEMMA 2.1. (For case 3.3 above) AssumeΛ0 ∩Re1 = {0}, then for C > 0,

|I (C ,δ1(ε),Zv)| ≤Cε · |I (C1(ε),δ1(ε),Zv)| .
PROOF. If the LHS is 0, then nothing needs to be done. Otherwise, assume w.l.o.g that v = (v1, v2) with v2 > 0. Then[

1 s
0 1

](
v1

v2

)
=

(
v1 + sv2

v2

)
,

and

(39) I (C ,δ1(ε),Zv) = 1

v2
[−v1 −C ,−v1 +C ].

Thus

|I (C ,δ1(ε),Zv)| = 2C

v2
=Cε · 2ε−1

v2
=Cε · |I (C1(ε),δ1(ε),Zv)|.

�

LEMMA 2.2. (For Case 3.2 above) Assume Λ0 ∩Re1 = {0}. Take Zv ∈ Prim1(Λ) and S > 0 satisfying case 3.2 above. Also let 1 < C ≤
0.5ε−1. Then

|[0,S]∩ I (C ,δ1(ε),Zv)| ≤ 4Cε · |[0,S]∩ I (C1(ε),δ1(ε),Zv)| .
PROOF. W.l.o.g, keep assuming that v = (v1, v2) with v2 > 0. In case 3.2,

[0,S]∩ I (C1(ε),δ1(ε),Zv) = [0,bv ].

If [0,S]∩ I (C ,δ1(ε),Zv) is empty nothing needs to be done. Otherwise, by Equa.(39),

0 <−v1 +C =⇒ v1 <C .
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Then

|[0,S]∩ I (C ,δ1(ε),Zv)| ≤ 2C

v2
= 2C

−v1 +ε−1 · −v1 +ε−1

v2

= 2C

−v1 +ε−1 · |[0,S]∩ I (C1(ε),δ1(ε),Zv)|
It remains to observe

2C

−v1 +ε−1 ≤ 2C

−C2 +ε−1 ≤ 2C

−0.5ε−1 +ε−1 = 4Cε.

�

LEMMA 2.3. [For Case 3.4 above] Assume Λ0 ∩Re1 = {0}. Take Zv ∈ Prim1(Λ) and S > 0 satisfying case 3.4 above. Also let 1 < C ≤
0.5ε−1. Then

|[0,S]∩ I (C ,δ1(ε),Zv)| ≤ 4Cε · |[0,S]∩ I (C1(ε),δ1(ε),Zv)| .
PROOF. W.l.o.g, keep assuming that v = (v1, v2) with v2 > 0. In case 3.4

[0,S]∩ I (C1(ε),δ1(ε),Zv) = [av ,S].

If [0,S]∩ I (C ,δ1(ε),Zv) is empty, nothing needs to be done. Otherwise, by Equa.(39),

−v1 −C

v2
≤ S =⇒ v1 + v2S ≥C .

Under this condition we have

|[0,S]∩ I (C ,δ1(ε),Zv)| ≤ 2C

v2

and

|[0,S]∩ I (C1(ε),δ1(ε),Zv)| = S − (−v1 −ε−1)

v2
= ε−1 + v2S + v1

v2
≥ ε−1 −C

v2
≥ 0.5ε−1

v2
.

Thus,

|[0,S]∩ I (C ,δ1(ε),Zv)| ≤ 2C

0.5ε−1
|[0,S]∩ I (C1(ε),δ1(ε),Zv)| .

Note that 2C
0.5ε−1 = 4Cε. �

3. [Not readable at the moment]Other non-cocompact lattices

[Needs further revision!]
Let Γ≤ G := SL2(R) be a lattice. Let X := G/Γ. We are going to assume some light hyperbolic geometry. Readers who are less familiar

with hyperbolic geometry are welcome to take Γ= SL2(Z). Main ideas are preserved in this case.
The discussion here is more “geometric" compared to the last section.
First we have the non-divergence theorem (compare Chapter 4).

THEOREM 3.1. For every ε> 0, there exists a compact subset of C ⊂ X such that for every x ∈ X , either

limsup
S→+∞

1

S
Leb{s ∈ [0,S], us .x ∉C } ≤ ε

or U.x is compact.

Proof is left as an exercise.
Let

T := {
x ∈ X

∣∣ U.x is compact
}

.

One can show that

THEOREM 3.2. There exist finitely many points y1, ..., yl in X with compact U-orbits such that if Ti := AU.yi then

T = ⊔
i=1,..,l

Ti .

Fix x0 ∉T , let

µS := 1

S

∫ S

0
(us )∗δx0 ds

and take µ to be a weak∗ limit. Let us explain why µ(T ) = 0, which follows if µ(Ti ) = 0 for every i = 1, ..., l . From now on we focus on a
single index i0. W.l.o.g., assume yi0 = [id]Γ, where [•]Γ stands for the image of • in the quotient by Γ.

3.1. Lifts of tubes. Define, for −∞≤ t1 < t2 ≤+∞,

Tt1,t2,i0 :={
at U.yi0

∣∣ t1 < t < t2, s ∈R}
T̃t1,t2,i0 :={

at U.ỹi0

∣∣ t1 < t < t2, s ∈R}
, T̃i0 := AU.ỹi0 .

where ỹi0 = [id]Γ∩±U ∈ G/Γ∩±U. In general, one should lift yi =: [gi ]Γ to ỹi = [gi ]Γ∩±gi Ug−1
i

.
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THEOREM 3.3. Fix some −∞< t1 < t2 <+∞. For every ε> 0, there exists a neighborhood Nε of Tt1,t2 such that

limsup
S→+∞

1

S
Leb{s ∈ [0,S] | us .x0 ∈Nε} ≤ ε.

In light of the case of X2, we are going to find two neighborhoods Nε ⊂N ′
ε such that the time a noncompact U-orbit spends in Nε

is much shorter than that in N ′
ε .

Consider the natural projection p : G/±U∩Γ→ G/Γ. It is an injection restricted to T̃i and is a closed embedding when restricted
to the closure of T̃s,t for every pair s < t . For t ′1 < t1 and t ′2 = t ′2(ε) to be determined, there exists an open neighborhood Ω̃ε of T̃t ′1,t ′2
such that

(40) p|Ω̃ε : Ω̃ε→ p
(
Ω̃ε

)
is a homeomorphism.

DEFINITION 3.4. For T ∈R,

cuspi0
(T ) :={

kat U.yi0

∣∣ k ∈ SO2(R), t < T
}= SO2(R)T−∞,T,i0 ;�cuspi0

(T ) :={
kat U.ỹi0

∣∣ k ∈ SO2(R), t < T
}= SO2(R)T−∞,T,i0 ,

LEMMA 3.5. There exists T0 ∈ R such that the following holds. Under p, �cuspi0
(T0) is mapped homeomorphically onto cuspi0

(T0).
For s ∈R, there exists T (s) < T0 such that TT0,s,i0 does not intersect cuspi0

(T (s)).

Anticipating the proof, t ′2 will be chosen depend on ε and linear algebra. Then we choose t ′1 to be T ′
1 +1 where T ′

1 := T (t ′2) comes
from Lem.3.5. Then Ω̃ε is chosen by Equa.(40).

LEMMA 3.6. The natural projection p restricted to cuspi0
(T ′

1)∪ Ω̃ε is a homeomorphism onto its image.

3.2. Linearization. Let us define q to be the natural quotient G/Γ∩±U → G/±U and φ : G/±U →R2/±1 by φ(g ) := g .e1/±1. For
notational convenience, we will be working with R2 rather than R2/±1. Here is a diagram.

G/Γ∩±U

G/Γ G/±U R2/±1

p q

φ

The �cuspi0
is already q-saturated: q−1q(�cuspi0

) = �cuspi0
. More concretely,

φ◦q(�cuspi0
) = {

v 6=0 ∈R2 ∣∣ ‖v‖ < eTi
}

/±1.

Ω̃ε may not be q-saturated. However, its image under φ◦q is an open neighborhood of

φ◦q
(
T̃t ′1,t ′2,i0

)
= (e t ′1 ,e t ′2 )× {0}/±1.

Then one can show that there exists a smaller open nbhdΩ′ of q
(
T̃t ′1,t ′2,i0

)
such that its preimage under q is contained in Ω̃ε. Thus we

can choose δ= δ(ε) > 0 small enough such that

Ω̃′
ε := (φ◦q)−1

(
(e t ′1 ,e t ′2 )× (−δ,δ)

)
/±1.

is contained in Ω̃ε. To combine �cuspi0
with Ω̃′

ε, choose a even smaller δ such that

Ñ ′
ε := (φ◦q)−1

(
Box(e t ′2 ,δ)

)
/±1.

is contained in �cuspi0
∪Ω̃′

ε where Box(e t ′2 ,δ) = [−e t ′2 ,e t ′2 ]× [−δ,δ] . So p restricted to Ñ ′
ε is injective.
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Also let
Ñε := (φ◦q)−1 (

Box(e t2+1,δ)
)

/±1.

Let N ′
ε := p(Ñ ′

ε ) and Nε := p(Ñε). They are open neighborhoods of Tt1,t2,i0 .

3.3. Some linear algebra. At this point, one can adapt the strategy of previous sections to prove Thm.3.3 and hence analogues of
Thm.1.1 for other lattices. The constant t ′2 = t ′2(ε) is determined in this process.

4. Exercises

4.1. Equidistribution via mixing.

• G = SL2(R), U =
{

us =
[

1 s
0 1

]
, s ∈R

}
, A =

{
at =

[
e t 0
0 e−t

]
, t ∈R

}
;

• V =
{

vr =
[

1 s
0 1

]
, r ∈R

}
;

• Γ is a lattice in G , let X :=G/Γ and m̂X be the unique G-invariant probability measure on X;
• Fix a right invariant Riemannian metric on G . Use this metric to induce a distance function d(·, ·) on G , let dX ([g1]Γ, [g2]Γ) :=

infγ1,γ2∈Γd(g1γ1, g2γ2);
• for every δ, s0 > 0, let

Box(δ, s0) := (−δ,δ)× (−δ,δ)× (0, s0);

• let Lebδ,s0 be the restriction of standard Lebesgue measure restricted to Box(δ, s0);
• by abuse of notation we also denote by Lebδ,s0 for its push-forward under the map (r, t , s) 7→ vr ·at ·us ;
• for x ∈ X , let Obtx denote the map G → X defined by g 7→ g .x.

EXERCISE 4.1. Fix x ∈ X , δ, s0 > 0. Show that there exists a non-negative function f ∈ L∞(X ,mX ) such that (Obtx )∗ Lebδ,s0 = f ·m̂X .

EXERCISE 4.2. Show that for every ε> 0, there exists δ> 0 such that for every s0 > 0, t > 0, (r,u, s) ∈ Box(δ, s0) and x ∈ X we have

dX (at · (vr au) ·us .x,at us .x) < ε.

Recall that mixing implies that for φ,ψ ∈ L2(X ,m̂X ),

lim
t→±∞

∫
φ(at .x)ψ(x)m̂X (x) =

∫
φ(x)m̂X (x) ·

∫
ψ(x)m̂X (x).

EXERCISE 4.3. For every s0 > 0, x0 ∈ X and f ∈Cc (X ), we have

lim
t→+∞

1

s0

∫ s0

0
f (at us .x0)ds =

∫
f (x)m̂X (x).

EXERCISE 4.4. Show that if (U .xn) is a sequence of compact U -orbits of periods Sn → +∞, then for every compactly supported
continuous function f ,

lim
n→+∞

1

Sn

∫ Sn

0
f (us .xn)ds =

∫
f (x)m̂X (x).

EXERCISE 4.5. Show that the above convergence (in Exer.4.3) is “uniform” in the following sense. For every f ∈ Cc (X ), ε, s0 > 0 and
x0 ∈ X , there exists δ> 0 such that for every y ∈ X with dX (x0, y) < δ, we have for all t > 0,∣∣∣∣ 1

s0

∫ s0

0
f (at us .x0)ds− 1

s0

∫ s0

0
f (at us .y)ds

∣∣∣∣< ε.

EXERCISE 4.6. Use the above exercise to give another proof of the equidistribution of horocycle flows. Show that if U .x0 is not compact
in X , then for every f ∈Cc (X ),

lim
S→+∞

1

S

∫ S

0
f (us .x0)ds =

∫
f (x)m̂X (x).





CHAPTER 11

Ergodic decomposition of unipotent invariant measures

Back to the Top.
The main reference of this chapter is [Sha91b] and [MS95, Section 2].
Notations

• X := G/Γwith G := SLn(R) and Γ := SLn(Z);
• U = {us , s ∈R} is a one-parameter unipotent subgroup of G.

DEFINITION 0.1. A subgroup U of SLn(R) is said to be a one-parameter unipotent subgroup iff there exists a nilpotent matrix u ∈
sln(R) such that U = {

exp(t .u), t ∈R}
.

In this and the following few chapters, we are going to assume the measure classification theorem of unipotent flows (Thm.1.1
below) and demonstrate how it is applied. Further discussion of its proof is delayed to a later chapter.

1. Ergodic U-invariant measures

The following is the description of ergodic U-invariant probability measures due to Ratner [Ra91a].

THEOREM 1.1. Let µ be an ergodic U-invariant probability measure on X, then there exists x ∈ X and a closed connected subgroup
H ≤ G containing U such that

1. H .x is closed and supports an H-invariant probability measure m̂H .x ;
2. µ= m̂H .x .

In short, one says that ergodic U-invariant probability measures are homogeneous (the word “algebraic” is also used). By writing
x = [g ]Γ and replacing H by g−1H g , the theorem may be rephrased as

THEOREM 1.2. Let µ be an ergodic U-invariant probability measure on X, then there exists g ∈ G and a closed connected subgroup
H ≤ G containing g−1Ug such that

1. [H ]Γ := HΓ/Γ is closed and supports an H-invariant probability measure m̂[H ]Γ ;
2. µ= g∗m̂[H ]Γ .

In particular, supp(µ) = g [H ]Γ.

EXAMPLE 1.3. If G = SL2(R) and U :=
{

us =
[

1 s
0 1

] ∣∣∣∣ s ∈R
}

, then candidates of H are {G,conjugates of U}. If further assume Γ is

cocompact, then G is the only candidate. For non cocompact lattices, there are finitely many candidates up to Γ-conjugacy.

We have discussed this example in depth in Ch.8,9,10.

EXAMPLE 1.4. If G = SL2(C) (Γ= SL2(Z[i ])) and U :=
{

us =
[

1 s
0 1

] ∣∣∣∣ s ∈R
}

, then, up to conjugacy, candidates of H are {U,V,SL2(R),G},

where V =
{[

1 s
0 1

] ∣∣∣∣ s ∈C
}

.

Where does the pair (g , H) live?

DEFINITION 1.5. For two subgroups A,B of G, define

N (A,B) := {
g ∈ G

∣∣ g Ag−1 ⊃ B
}

.

In this terminology, g as above belongs to N (H ,U). When H =U , N (U ,U ) is just the normalizer of U in G. When H = G, N (G,U ) =
G. How about H? Note that we do not want U to appear in the definition of this space.

DEFINITION 1.6. Let H be the collection of subgroups L of G satisfying

1. L is a connected and closed subgroup;
2. [L]Γ is closed and supports an L-invariant probability measure m̂[L]Γ ;
3. some one-parameter unipotent subgroup of L acts ergodically on m̂[L]Γ .

Thus H as above belongs to H .
From µ ∈ Prob(X)U,Erg we get a pair (g , H). However, the pair (g , H) is not unique, for

g∗m[H ]Γ = (g h)∗m[H ]Γ = (g hγ)∗m[γ−1 Hγ]Γ

for every h ∈ H and γ ∈ Γ. Thus (g hγ,γ−1Hγ) and (g , H) correspond to the same µ. The lemma below says that is all.

LEMMA 1.7. Let H1, H2 be two connected closed subgroups of G such that HiΓ (i=1,2) are both closed. Let g1, g2 ∈ G. Then g1H1Γ=
g2H2Γ iff there exist h2 ∈ H2 and γ2 ∈ Γ such that

g2h2γ2 = g1, γ−1
2 H2γ2 = H1.

PROOF. It only suffices to prove the “ =⇒ ” direction. The other direction follows directly.
So assume g1H1Γ= g2H2Γ. Then

H1Γ= g3H2Γ, g3 := g−1
1 g2.

Thus id ∈ g3H2Γ and
1 = g3h2γ2, ∃h2 ∈ H2, γ2 ∈ Γ2.
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This already implies that

g2h2γ2 = g2g−1
3 = g1.

Now we have

H1Γ= γ−1
2 h−1

2 H2Γ= γ−1
2 H2γ2Γ.

By inspecting a small neighborhood of [id]Γ and use the fact that [H1]Γ and [γ−1
2 H2γ2]Γ are both embedded submanifolds, we see that

H1 = γ−1
2 H2γ2. �

2. Candidates of homogeneous orbit closure

Take some x0 ∈ X. Eventually, we would know that the closure of U.x0 is homogeneous and the homogeneous measure is finite
and U-ergodic. But this does not follow immediately from the Thm.1.1. Nevertheless, we can say something even without appealing
to Thm.1.1.

DEFINITION 2.1. Let A (depending on x0 ∈ X and U) be the collection of subgroups L of G satisfying

1. L is a connected closed subgroup of G containing U;
2. L.x0 is closed.

LEMMA 2.2. The collection A has a smallest element. Indeed, if L1,L2 ∈A then (L1 ∩L2)◦ ∈A .

PROOF. First we remark that for a closed subgroup L ≤ G, if LΓ is closed then L◦Γ is also closed. Indeed, one shows that every orbit
of L◦ on L/L ∩Γ, which is homeomorphic to LΓ/Γ, is open and hence closed. So it suffices to show that if L3 := L1 ∩L2, then L3Γ is
closed. This follows from a similar reasoning. Indeed, every orbit of L3 on [L1]Γ∩ [L2]Γ is open and hence closed. To see why every
orbit is open, one may take a local neighborhood. �

As an exercise, fill in the missing details in the proof.
Take g0 ∈ G such that x0 = [g0]Γ.

THEOREM 2.3. Let H := HA be the smallest element of A , then

1. the closed set H .x0 supports a finite H-invariant measure mH .x0 ;
2. the measure mH .x0 is U-ergodic;
3. there exists a Q-algebraic subgroup H′ of SLn such that g−1

0 H g0 = H′(R)◦. Actually, H′ is the smallest Q-algebraic subgroup
containing g−1

0 Ug0. In particular, H is algebraic.

The last statement can be skipped if you are allergic to algebraic groups.
Before the proof, note that there is a locally finite measure mH .x0 that is only “quasi-invariant under H” (for instance, the one

induced from a right invariant Riemannian metric). A priori, it is not clear why it is H-invariant. But one can still talk about ergodicity
and the associated unitary representation (with suitably twisted action). You may ignore this minor issue by pretending mH .x0 to be
H-invariant from the start.

Here is a sketch of proof.
Step 1. By Mautner’s phenomenon (see [Moo80, Theorem 1.1] and some supplementary arguments in [Sha91b, Proposition 2.7]),

there exists a closed normal subgroup F CH containing U such that for every unitary representation of H , every U-fixed vector is
F -fixed. We already “know” this if H is semisimple by arguments in Ch.7. See exercises attached to Ch.7 for an example beyong the
semisimple case. Thus to show U-ergodicity, suffices to show F -ergodicity.

Step 2. Let ΓH be the stabilizer of x0 in H . Explicitly, ΓH = H ∩ g0Γg−1
0 . Define

F ′ := F ·ΓH .

Since F is normal, F ′ is a closed subgroup of H . Since F ′ is right invariant under ΓH , F ′ΓH /ΓH is closed in H/ΓH . Thus F ′.x0 is closed.
And F ′ contains U. By minimality of H , F ′ = H .

Step 3. Now we show F -ergodicity of mH .x0 . Let Ω be an F -invariant measurable set of H/ΓH . Assume mH .x0 (Ω) > 0, we need to
show that its complement has zero measure. Since F is normal, we see that the preimage Ω̃ of Ω in H right invariant under the group
F ·ΓH . Let mH be a right H-invariant locally finite measure on H . Then µ := 1Ω̃ ·mH is right F ·ΓH -invariant. Since µ is a locally finite
measure, by continuity, the stabilizer of µ in H (w.r.t. the action from the right) is a closed subgroup. Thus µ is right F ′-invariant, hence
H-invariant. By the uniqueness of invariant measures, µ= mH (up to a scalar, which has to be 1). In particular, the complement of Ω̃
has zero measure. This implies that the complement ofΩ also has zero measure.

Step 4. It remains to show that mH .x0 is a finite measure. In fact every U-ergodic locally finite measure ν is finite. Let us see why.
By pointwise ergodic theorem (see [Wal82, Theorem 1.14, Section 1.6]), for every f ∈ L1(ν), for ν-almost every X,

f ∗(x) := lim
S→+∞

1

S

∫ S

0
f (us .x)ds exists.

Moreover f ∗ ∈ L1(ν) and is U-invariant. By ergodicity, f ∗ is a constant, which has to be 0 if ν is an infinite measure.
On the other hand, by non-divergence of unipotent flow, there exists a compact set C such that if f is the indicator function of C ,

then f ∗ 6= 0.
Thus ν has to be finite. This finishes the proof of 1 and 2 of Thm.2.3.
Step 5. To save notation, we assume g0 = id here.
Let L be the smallest Q-algebraic subgroup of SLn containing U. Let π1 : L → T be the maximal quotient (algebraic) torus of L. π1

is defined over Q. Since U is unipotent and π1 preserves this property, the image of π1(U) consists of unipotent elements. But torus
T only contains semisimple elements. Thus U is contained in the kernel of π1, which is in the form of a semisimple (algebraic) group
semidirect product with a unipotent (algebraic) group. In particular, L admits no nontrivial characters (:=algebraic group morphisms
to C× = GL1). By a theorem of Borel–Harish-Chandra (see for instance [Bor19, Corollary 13.2]), L∩Γ (L := L(R)◦) is a lattice in L and in
particular, LΓ/Γ is closed. See exercises attached to Chapter 8. By minimality of H , H ⊂ L. Our goal is to show H = L (this is what we
mean by saying H is “algebraic”). Note that the Zariski closure of H is equal to L.
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Step 6. Let h be the Lie algebra of H . By Levi’s decomposition (reference? probably Bourbaki’s book?), there exists a semisimple
sub Lie algebra m and a solvable ideal r of h such that h=mnr. By [Bor91, ChII, Corollary 7.9], since m= [m,m], m is already algebraic
(i.e., the corresponding Lie subgroup M is algebraic). Let M be the correspondingR-algebraic subgroup. We seek to show that r consists
of nilpotent matrices and hence is algebraic. By [Bor91, ChII, Corollary 7.7], this shows that H is algebraic. Since H normalizes r and
“normalizing r” is an algebraic condition, we have that L normalizes r. Thus r is an ideal of l. Let π2 : l→ l/u ∼= m (here u is the Lie
algebra of the unipotent radical of L), then π2(r) is an ideal of l/u. But every non-zero ideal of a semisimple Lie algebra is semisimple
and can not be solvable. Thus π2(r) = 0, or r⊂ u, which consists of nilpotent matrices. The rest of the claim in 3. of Thm.2.3 now follows
from Borel density theorem.

3. Tubes and ergodic components

Assume U acts on g∗m[H ] ergodically, it is still possible for some h ∈ H , U[g h]Γ is trapped in a closed homogeneous set of smaller
dimension.

DEFINITION 3.1. For H ∈H , define
Sing(H ,U) := ⋃

L∈H ,L�H

N (L,U);

NS(H ,U) := N (H ,U) \ Sing(H ,U);

T (H ,U) := NS(H ,U)Γ/Γ.

LEMMA 3.2. Let H1, H2 ∈H . If NS(H1,U)Γ∩NS(H2,U)Γ 6= ;, then H1 is Γ-conjugate to H2 and NS(H1,U)Γ= NS(H2,U)Γ.

PROOF. So assume NS(H1,U)Γ∩NS(H2,U)Γ 6= ;, which means that there exist g1 ∈ NS(H1,U) andγ1 ∈ Γ such that g1γ1 ∈ NS(H2,U).
By definition, we have

g−1
1 Ug1 ⊂ H1 ∩γ1H2γ

−1
1 .

We know (the connected component of) H ′ := H1 ∩γ1H2γ
−1
2 has a closed orbit based at [id]Γ. But we do not know whether it supports

a finite H ′-invariant measure. This is where we apply Thm.2.3 (to the unipotent group g−1
1 Ug1 and x0 = [id]Γ) to conclude that there

exists L ⊂ H ′, L ∈H such that g−1
1 Ug1 ⊂ L. So g1 ∈ N (L,U).

Therefore H1 = γ1H2γ
−1
1 for otherwise L will be strictly contained in at least one of H1 or γ1H2γ

−1
1 and this would imply g1 ∉

NS(H1,U) or g1γ1 ∉ NS(H2,U), contradicting against our assumption. NS(H1,U)Γ= NS(H2,U)Γ follows immediately. �

Since U acts ergodically on mX (it is even mixing!), we have G ∈H and

X = ⊔
[H ]∈H /∼Γ

T (H ,U)

thanks to the Lem.3.2.

DEFINITION 3.3. For [H ] ∈H / ∼Γ, let
µ[H ] :=µ|T (H ,U).

EXAMPLE 3.4. If X = SL2(R)/SL2(Z) and U =
{[

1 s
0 1

] ∣∣∣∣ s ∈R
}

, then H / ∼Γ= {U,SL2(R)} (if you pass to a smaller subgroup of

SL2(Z) then this set has other SL2(Q)-conjugates of U that are not conjugate over Γ). Here T (U,U) consists of compact orbits of U, T (G,U)
is the complement of T (U,U).

See Sec.4 for more examples.
Assuming Lem.3.6, we have proved

THEOREM 3.5. For a U-invariant probability measure µ,

µ= ∑
[H ]∈H /∼Γ

µ[H ]

and each µ[H ] is U-invariant.

LEMMA 3.6. H is countable.

PROOF. For every H ∈H , H ∩Γ is a lattice in H . Thus H ∩Γ is finitely generated. Note that this seems not obvious unless H ∩Γ is
cocompact. In the case at hand, H is algebraic by Thm.2.3. Thus H ∩Γ is an arithmetic lattice of H and finite generation follows from
the theory of Siegel sets, see [Bor19]. See also [Gel14, Lecture 3, Section 5] for another possibly more geometric proof. Hence the set
{H ∩Γ, H ∈H } is countable.

Since H can be recovered from H ∩Γ by

H =
(
H ∩Γ∩SLn(R)

)◦
,

we are done. Here H ∩Γmeans the closure of H ∩Γ in SLn(C) with respect to the topology defined by polynomials. �

We have not used Thm.1.1 yet. For a finite positive measureµ on X, let µ̂ :=µ/µ(X ) be the unique probability measure proportional
to µ.

THEOREM 3.7. Assume µ[H ] 6= 0. For almost every U-ergodic component ν of �µ[H ], there exists gν ∈ N (H ,U) such that ν= (gv )∗m[H ]Γ .

PROOF. First we have the (abstract) ergodic decomposition�µ[H ] =
∫

Prob(X)U,Erg
νλ(ν).

Thus for almost every ν, ν(T (H ,U)) = 1. Take such a ν, by Thm.1.2, there exists H1 ∈ H and g1 ∈ N (H1,U) such that ν = (g1)∗m̂[H1]Γ .
By pointwise ergodic theorem, we can find a full measure set of h1 ∈ H1 such that

lim
S→+∞

1

S

∫ S

0
(us )∗δ[g1h1]Γ ds = (g1)∗m̂[H1]Γ .

In particular, U.[g1h1]Γ = g1[H1]Γ. One sees that g1h1 ∈ N (H1,U) and we claim that g1h1 ∈ NS(H1,U). Otherwise, there exists L � H1

with L ∈ H such that g1h1 ∈ N (L,U). This implies that U.[g1h1]Γ ⊂ g1h1[L]Γ. Since dimL is strictly smaller than dim H1, we have a
contradiction.
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So now [g1h1]Γ ∈ T (H1,U), moreover, all such h1’s are of full measure in H1 and consequentlyν(T (H1,U)) = (g1)∗m̂[H1]Γ (T (H1,U)) =
1. But ν(T (H ,U)) = 1. Thus T (H1,U) and T (H ,U) have nontrivial intersection. By Lem.3.2, for some γ1 ∈ Γ, H1 = γ1Hγ−1

1 and
T (H1,U) = T (H ,U). Hence [g1H1]Γ = g1γ1[H ]Γ. Let gν := g1γ1. One can check that gν ∈ N (H ,U) and ν= (gν)∗m̂[H ]Γ �

4. Two examples

Here we include two examples, a little bit beyond SL2(R), to illustrate what kind of objects we are dealing with. You are welcome
to test the general theory using these (still rather special) examples!

In both examples, set

• G = SL2(C), Γ= SL2(Z[i ]), U =
{

us =
[

1 s
0 1

] ∣∣∣∣ s ∈R
}

;

• U(C) :=
{

us =
[

1 s
0 1

] ∣∣∣∣ s ∈C
}

• for t ∈C×, let at :=
[

t 0
0 t−1

]
.

One can show that Γ is a lattice in G (using non-divergence of unipotent flows, for instance). And G/Γ can be embedded in
SL4(R)/SL4(Z) (so this example does not escape away from the setting in this chapter).

4.1. Example 1.

• H :=
{

us =
[

1 s
0 1

] ∣∣∣∣ s ∈C
}

, h is the Lie algebra of H ;

• KH := {az , z ∈C, |z| = 1}.

LEMMA 4.1. N (H ,U ) = NG (H) = {
at ·us , t ∈C×, s ∈C}=: B.

PROOF. Let g ∈G . Indeed, g belongs to N (H ,U ) iff Ad(g ) ·h contains u. By Bruhat decomposition (ref??),

G = B wB tB

where w =
[

0 1
−1 0

]
. If g ∈ B , then Ad(g ) ·h= h⊃ u. On the other hand, if g = b1wb2 for bi ∈ B then

Ad(g ) ·h= Ad(b1)Ad(w) ·h= Ad(b1) ·
[

0 0
∗ 0

]
=⇒ Ad(g ) ·h∩h= {0}.

So we are done. �

The orbits of B on G/Γ are all dense, and hence not easy to draw. Since N (H ,U ) (= B here) is stable under right translation by
NG (H) and therefore NG (H)∩Γ (call it ΓN for simplicity). Thus N (H ,U ) being closed implies that N (H ,U )/ΓN ⊂ G/ΓN is closed. We
will draw pictures for N (H ,U )/ΓN . (warning! pictures are just for illustration, they may be wrong in many aspects!)

By the way, a quick computations show that

ΓN =
{[

1 Z[i ]
0 1

]
,

[ −1 Z[i ]
0 −1

]
,

[
i Z[i ]
0 −i

]}
.

Here is a picture for N (H ,U )/ΓN with UΓN /ΓN contained in here:

What about Sing(H ,U )? The possible L ∈ H and L ( H are given as follows. For z ∈ C, let U z :=
{

us·z =
[

1 sz
0 1

] ∣∣∣∣ s ∈R
}

. Then

every proper nontrivial connected subgroup of H is of this form. And U z ∈H iff U z ∩Γ is a lattice in U z iff R.z ∩Z[i ] ≤R.z is a lattice.
Note that

N (U z ,U ) =
[ p

z−1 0
0

p
z

]
·NG (U z ) =

[ p
z−1 0
0

p
z

]
· {at , t ∈R×} ·U(C)

And Sing(H ,U ) is the union of these N (U z ,U ) as z varies over Z[i ].
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4.2. Example 2.

• H := SL2(R), U i := {ui s , s ∈R}.

LEMMA 4.2. N (H ,U ) =U i ·SL2(R)tU i ·SL2(R) ·
[

i 0
0 −i

]
.

Note that U i ·SL2(R) ·
[

i 0
0 −i

]
=

[
i 0
0 −i

]
·U i ·SL2(R) = U(C) ·SL2(R) ·

[
i 0
0 −i

]
.

PROOF. As before, N (H ,U ) = {
g ∈G , Ad(g ) ·h⊃ u

}
. It is direct to observe that RHS is a subset of LHS. It remains to do the converse.

Recall Bruhat decomposition again: G = B wB tB . If g ∈ B , then we are done since B is contained in the right hand side.
Now assume g ∈ B wB . Every element b of B can be written as at us with t ∈C×, s ∈C. Since w normalizes {at , t ∈C×}, we can write

g−1 = u2at1 wu1, ∃u1,u2 ∈ U(C), t1 ∈C×.

Thus (to save notation we omit Ad in the following)

g−1 ·u=(u2at1 wu1) ·u= (u2at1 ) ·
[

0 0
R 0

]
=u2 ·

[
0 0

t−2
1 R 0

]
=

[ ∗ ∗
t−2

1 R ∗
]
⊂ h= sl2(R).

Thus t−2
1 R⊂R =⇒ t1 ∈R∪ iR. In either case (write u1 = uz1 for some z1 ∈C),

g−1 ·u= u2 ·
[

0 0
R 0

]
=

[
1 z1

0 1

]
·
[

0 0
R 0

]
·
[

1 −z1

0 1

]
=R ·

[
z1 −z2

1
1 −z1

]
⊂ sl2(R).

Thus z1 ∈R. And the proof completes. �

The above proof also shows that

LEMMA 4.3. NG (H) = SL2(R)tSL2(R) ·
[

i 0
0 −i

]
.

And hence one can check that

LEMMA 4.4. ΓN := NG (H)∩Γ= SL2(Z)tSL2(Z) ·
[

i 0
0 −i

]
.

Below is a picture of N (H ,U )/ΓN sitting inside G/ΓN as a closed subset. Note that its projection to G/Γ is dense (you probably saw
this in some exercise section).

Up toΓN -conjugacy, the only proper nontrivial connected subgroup of H containing U is just U itself. Thus Sing(H ,U ) = N (U ,U )ΓN .

LEMMA 4.5. N (U ,U ) = NG (U ) and is generated by
{

at ·us , t ∈R×, s ∈R}∪[
i 0
0 −i

]
.
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Thus the picture is not so new. Note that since U i commutes with U , U i translates of UΓN /ΓN does not “twist” the appearance of
UΓN /ΓN (unlike U i translates of HΓN /ΓN ).

5. Exercises



CHAPTER 12

Linearization technique

Back to the Top.
In this chapter we are going to discuss the linearization method due to Dani–Margulis [DM93]. We will illustrate the method by

proving an equidistribution statement, which on the one hand implies Oppenheim conjecture, on the other hand forms one ingredient
of quantitative Oppenheim. Same method can be used to deduce equidistribution of unipotent flows, and hence to classify orbit
closures of orbits of unipotent flows from the measure classification theorem. This will be left as a difficult exercise.

The main reference of this chapter is [MS95, Section 3]. Other related resources include Shah [Sha91b, Sha91a, Sha09], Rat-
ner [Ra91a, Ra91b], Eskin–Mozes–Shah [EMS96], Eskin–Margulis–Mozes [EMM98, Section 4]. An effective treatment appears in
[LMMS19].

Recall the notations when we discuss Oppenheim conjecture.

• G = SL3(R), Γ= SL3(Z), X := G/Γ;
• m̂X is the unique G-invariant probability measure on X;
• H0 := SOQ0 (R) with Q0(x1, x2, x3) = 2x1x3 −x2

2 ;

• U =
us := exp

s ·
 0 1 0

0 0 1
0 0 0

 ∣∣∣∣∣∣ s ∈R
⊂ H0 ;

• A =
at := exp

t ·
 1 0 0

0 0 0
0 0 −1

 ∣∣∣∣∣∣ t ∈R
⊂ H0;

• also we fix some g0 ∈ G and x0 := [g0]Γ := g0Γ/Γ.

1. Statement

As we explained, Oppenheim conjecture follows once we prove

THEOREM 1.1. If Q :=Q0 ◦ g0 is irrational, then H0g0Γ/Γ is dense in X.

Actually something weaker is proved in Ch.5, Thm.1.2, which is sufficient. Now we would like to explain how to use Ratner’s
description of ergodic U-invariant probability measures to prove this stronger claim.

The idea is as follows. Take
K0 := (H0 ∩SO3(R))◦,

a maximal compact subgroup of H◦
0. Then at K0.x0 ⊂ H0.x0 and we seek to show that as t →+∞ (−∞ is also ok), at K0.x0 becomes dense

in X. And this is achieved by the following equidistribution theorem

THEOREM 1.2. Let m̂K0.x0 be the unique K0-invariant probability measure on K0.x0. Then

lim
t→+∞(at )∗m̂K0.x0 = m̂X

in weak∗ topology.

REMARK 1.3. From the proof, you will see that m̂K0.x0 can be replaced by any other probability measure that is absolutely continuous
with respect to this one without affecting the conclusion.

REMARK 1.4. Instead of K0, you can also use other subgroups of H0 and prove analogues of the theorem above. Actually it would be
easier if we replace K0 by a bounded open subset of H0. However, I prefer to do this in preparation for our later discussion on quantitative
Oppenheim. This change only has an effect on Sec.11.

2. Step 1, nondivergence

Let µ be a limit of (µt ) := ((at )∗m̂K0.x0 ) as t →+∞.

LEMMA 2.1. µ ∈ Prob(X).

In other words, there is no escape of mass. This is a consequence of (C ,α)-good property and a lemma in representation the-
ory/linear algebra.

3. Step 2, unipotent invariance

LEMMA 3.1. µ is U-invariant.

PROOF. Since m̂K0.x0 is K0-invariant, µt is at K0a−1
t -invariant. Hence µ is invariant under the limit group, which turns out to be U.

More details: Let k0 be the Lie algebra of K0. Take vt ∈ Ad(at ).k0, if lim vt = v , then by continuity of the induced map G×LFM(X ) →
LFM(X ), µ is exp(v)-invariant.

Recall that the Lie algebra of H0 is

soQ0 =


 x11 x12 0
x21 0 x12

0 x21 −x11

 .

And the Lie algebra of SO3(R) is given by anti-symmetric matrices. Thus by taking their intersection:

k0 =


 0 x12 0
−x12 0 x12

0 −x12 0

 .

67
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And

Ad(at )k0 =


 0 e t x12 0
−e−t x12 0 e t x12

0 −e−t x12 0

 .

So depending on s ∈R, we take

vt :=
 0 s 0

−e−2t s 0 s
0 −e−2t s 0

 ∈ Ad(at )k0.

Then as s varies, lim vt fills u, the Lie algebra of U. �

Thus by the first two steps we get (by passing to a subsequence)

limµt =µ ∈ Prob(X)U.

4. Step 3, ergodic components and tubes

By Thm.3.5 and 3.7 from Chapter 11, to show µ = m̂X, it suffices to show that for every H ∈ H , H 6= G, µ(T (H ,U)) = 0. Note that
Ratner’s theorem Ch.11, Thm.1.1 is only used to go from µ(T (H ,U)) = 0 to µ= m̂X. To show µ(T (H ,U)) = 0, we do not need it. The way
to achieve this is via:

LEMMA 4.1. For every compact subset E of T (H ,U) and ε> 0, there exists a neighborhood Nε of E such that

limsup
t→+∞

µt (Nε) ≤ ε.

In view of Ch.10 (cf. [DS84]), we hope to find a bigger N ′
ε such that

µt (Nε) ≤ εµt (N ′
ε ).

Since µt is a probability measure, this finishes the proof.

5. Step 4, a lemma on linear representations

Though we do not know how to find Nε ⊂N ′
ε at the moment, we do have something like this happening in a representation (rather

than the complicated G/Γ) due to the (C ,α)-good property. To give us more freedom (see below, the choice of Φ) for things to come,
we need a slightly more flexible statement.

DEFINITION 5.1. Fix a non-empty connected bounded open set D ⊂ k0, let

ψt : D → G, x 7→ψt (x) := at exp(x).

LEMMA 5.2. Let V be a representation of G. Let W be a linear subspace of V . For every compact subset E of W and every ε> 0, there
exists another compact set F ⊂W such that the following is true. For every open neighborhoodΦ of F , there exists an open neighborhood
Ψ of E such that for every t ∈R, v ∈V , every ball B ⊂ D, at least one of the following is true

1. ψt (B).v ⊂Φ;
2. Leb

{
x ∈ B

∣∣ψt (x).v ∈Ψ}≤ εLeb
{

x ∈ B
∣∣ψt (x).v ∈Φ}

.

REMARK 5.3. The first possibility can often be excluded due to “algebraic” reasons (for instance, see Sec.11). And the second option is
what we want.

REMARK 5.4. You can replace Leb by any other measure equivalent to Leb, it is just that the choice ofΨmay depend on this measure.
Actually in application we have in mind, Leb should be replaced by some measure which maps to m̂K0x0 under the exponential and the
orbit map. We are going to ignore this issue in the following.

6. Step 5, representation and dynamics, naive ideas

Let ΓN := Γ∩NG(H).

DEFINITION 6.1. Let
NG(H)(1) := {

g ∈ NG(H)
∣∣ det

(
Ad(g ),h

)=±1
}

LEMMA 6.2. ΓN = Γ∩NG(H)(1).

Take a representation VH of G and a vector vH ∈VH such that the stabilizer of vH (or just ±vH ) in G is equal to NG(H)(1). Moreover,
we want VH to be equipped with a Q-structure (i.e., fix a copy of QdimVH in VH , call it VH (Q)) and vH ∈ VH (Q). A priori, NG(H)(1)

is not known to be “observable” , the existence of such a pair (VH , vH ) is not obvious. But one can take VH := ∧dim H sln and vH :=
v1 ∧ ...∧ vdim H where (v1, ..., vdim H ) is a basis of h. For this specific choice of vH , the stabilizer of ±vH in G is equal to NG(H)(1). You
may also have other choices. For instance when G = SL2(R) and H is equal to the upper triangular unipotent group, then VH can be
taken to be the standard representation R2 and vH = e1.

To go from the representation VH to G/Γ, the following diagram is very natural.

G/ΓN

G/Γ G/NG(H)(1) VH .

p q

φ

Here p and q are natural projections and φ([g ]) := g .vH . Strictly speaking φ may only be injective replacing VH by VH /±1, but we will
ignore this minor issue.

Here is something naive one can do at this stage. Recall E ⊂ T (H ,U) is a compact set.

1. Take a compact subset Ẽ ⊂ N (H ,U) such that E = [Ẽ ]Γ, the image of Ẽ in G/Γ;
2. Let E∨ :=φ◦q(Ẽ) = Ẽ .vH ;
3. Apply Lem.5.2 above to E = E∨ and W to be determined (you may take W =V and see why it does NOT work). Then we get F

(depending also on ε) by Lem.5.2, which asserts that for every open neighborhoodΦ (we do not have a favoriteΦ yet, so just
fix some) there exists an open neighborhoodΨ of E∨ such that something holds.

4. We simply take Nε := p
(
(φ◦q)−1Ψ

)
and N ′

ε := p
(
(φ◦q)−1Φ

)
.
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To simplify notations,

DEFINITION 6.3. For t ∈R and [γ]ΓN ∈ Γ/ΓN ,

Dt (Nε) :={
y ∈ D

∣∣ψt (y).x0 ∈Nε

}
Dt (Ψ, [γ]ΓN ) :={

y ∈ D
∣∣ψt (y)g0γ.vH ∈Ψ}

.

And define Dt (Ψ) :=⋃
[γ]∈Γ/ΓN Dt (Ψ, [γ]). Similarly define Dt (N ′

ε ), Dt (Φ, [γ]) and Dt (Φ).

Thus from the definition (the naive definition of Nε above, we will work with a different Nε later in Sec.8)

Dt (Nε) =⋃
Dt (Ψ, [γ]ΓN ).

7. Step 6, self-intersection

Now we seek to refine the rather crude strategy proposed in Step 5 so that it would actually work.
First of all in general, unlike the SL2(R)-case, the projection N (H ,U)/ΓN → G/Γ is not injective.

LEMMA 7.1. If g ∈ G is such that for two different [γ1]ΓN 6= [γ2]ΓN ∈ Γ/ΓN we have gγi ∈ N (H ,U) for i = 1,2, then g ∈ Sing(H ,U)Γ.

So ideally we would like to avoid Sing(H ,U) (or its projection to G/ΓN , or G/Γ) from our discussion. But this is impossible! Since
usually Sing(H ,U) is dense in N (H ,U) modulo ΓN , every non-empty open set intersects non-trivially with it. Lucky for us, each time
we only work with certain compact set F (to be found) in VH (and we have the freedom of choosing its neighborhood). And the subset
of Sing(H ,U) that is “relevant to F " is indeed closed, see Lem.7.5.

To detect N (H ,U) inside VH , it is convenient (though maybe not necessary) to have:

DEFINITION 7.2. Let WH be the R-linear subspace of VH spanned by N (H ,U).vH .

This WH would be the W when we apply Lem.5.2 above.

LEMMA 7.3. We have
(φ◦q)−1(WH ) = N (H ,U)/ΓN .

The reader is reminded that being compact in VH is not the same as being compact in G/NG(H)(1), as the SL2(R)-case already told
us, unless G.vH is closed in VH , which is true if H is reductive by [Kem78] or if Γ is arithmetic and cocompact in G, for other reductive
G’s.

Here is the important observation

DEFINITION 7.4. Let F be a compact subset of WH , let

Sing(F ) := {
g ∈ G

∣∣ g .vH ∈ F, gγ.vH ∈ F ∃γ ∈ Γ\ΓN
}

Thus Sing(F ) ⊂ Sing(H ,U). The fact we need is that

LEMMA 7.5. Sing(F )Γ is closed.

SKETCH OF PROOF. First note that Γ.vH is discrete in VH . This is rather straight-forward since vH is a rational vector and the image
of Γ in SL(VH ) is commensurable with SLN (Z) for N = dimVH . For non-arithmetic lattices, see [DM93] for a proof.

Therefore if (gn) is bounded mod Γ and (gn .vH ) is bounded in VH , then (gn) is bounded modulo ΓN . The conclusion follows
quickly from here. �

Note that
Sing(F )Γ := {

g ∈ G
∣∣ gγ1.vH ∈ F, gγ2.vH ∈ F, ∃[γ1] 6= [γ2] ∈ Γ/ΓN

}
Consequently, by a continuity argument and the discreteness of Γ.vH ,

LEMMA 7.6. Let E ′ be a compact set in X \ [Sing(F )]Γ. Then there exists an open neighborhoodΦ of F such that for every [g ]Γ ∈ E ′,

#
{
[γ] ∈ Γ/ΓN

∣∣ gγ.vH ∈Φ}≤ 1.

8. Step 7, define the neighborhood

Let us explain how to find Nε. Fix E ⊂ T (H ,U) and ε> 0.
Define E∨ as in Sec.6. By taking W =WH (see Def.7.2), Lem.5.2 offers some compact set F of WH . By Lem.7.5, [Sing(F )]Γ is closed

and is contained [Sing(H ,U)]Γ by Lem.7.1.
Now we take E ′ to be any compact set away from [Sing(H ,U)]Γ whose interior contains E . We find an open neighborhood Φ of F

such that the conclusion of Lem.7.6 holds. ThenΨ, an open neighborhood of E , is chosen according to Lem.5.2.
Just in case one gets confused, here is a diagram summarizing the logical dependence:

Now
Nε := Int(E ′)∩p

(
(φ◦q)−1Ψ

)
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9. Step 8, a covering argument

The proof will be concluded with the help of a covering argument, something we encountered when discussing nondivergence of
unipotent flow on XN . The argument here seems to differ from that of [EMS96].

Without loss of generality, assume D itself is a ball (the general case can be reduced to this one). The D(3)(•) is almost the same as
D(•) except that in Def.6.3, we replace D by the disk with the same center but whose radius is 3 times the radius of D (this is in order to
apply Besicovitch’s covering lemma, see Stein’s book on real analysis, Chapter 3, Problem 3).

We further assume (this will be explained later in Sec.11)

(41) for t large enough, ψt (D)g0γ.vH *Φ, ∀γ ∈ Γ.

Recall the definition Dt (Φ) and Dt (Φ, [γ]) from Def.6.3.
For each [γ] such that Dt (Φ, [γ]) is non-empty. Find balls {Bi }i∈It ,[γ] ⊂ D(3)

t (Φ, [γ]) whose centers cover Dt (Φ, [γ]). Here It ,[γ] is

some index set. We claim that we can find a covering such that for every i ∈It ,[γ], there exists y ∈ Bi such that

(42) ψt (y)g0γ.vH ∉Φ.

Indeed, for each y ∈ Dt (Φ, [γ]), take By to be the largest open ball centered at y. Then this collection would satisfy Equa.(42) by
Equa.(41).

Let It :=⊔
[γ]∈Γ/ΓN It ,[γ]. Then Dt (Φ) is covered by the centers of {Bi }i∈It . By Besicovitch covering lemma, there exists a constant

C0 > 0, depending only on the dimension of k0, and a subset Jt ⊂ It such that {Bi }i∈Jt is a covering of Dt (Φ) of multiplicity (i.e., the
maximal number of possible overlaps among Bi ’s) bounded by C0.

Let Jt ,[γ] :=Jt ∩It ,[γ].
Let me summarize the discussion in this subsection by the following lemma:

LEMMA 9.1. Take t such that Equa.(41) holds. There exists a covering of Dt (Φ) by open balls (B j ) j∈Jt together with a partition of the
index set Jt =t[γ]∈Γ/ΓN Jt ,[γ] satisfying the following:

1. For j ∈Jt ,[γ], B j ⊂ D(3)(Φ, [γ]).

2. For j ∈Jt ,[γ], there exists y ∈ B j such that

at exp(y)g0γ.vH ∉Φ.

3. The multiplicity of the covering is at most C0 for a constant C0 > 0 depending only on the dimension of k0. Or more formally,∑
j∈Jt

1B j ≤C0.

10. Step 9, finish the proof under some assumption

LEMMA 10.1. There is a constant C1 > 0 such that for t satisfying Equa.(41)

Leb(Dt (Nε)) ≤C1εLeb(D).

Thus Lem.4.1 follows from this lemma provided Equa.(41) is verified.

PROOF. Take C1 := 3dimk0C0.
Take y ∈ Dt (Nε), then by Lem.7.6, there exists a unique [γy ] ∈ Γ/ΓN such that

ψt (y)g0γy .vH ∈Φ.

On the other hand, since y ∈ Dt (Ψ) ⊂ Dt (Φ), there exists [γ] ∈ Γ/ΓN and j ∈Jt ,[γ] such that

ψt (y)g0γ.vH ∈Φ, and y ∈ B j .

By uniqueness, [γ] = [γy ]. Let Dt (Nε, [γ]) := Dt (Nε)∩Dt (Ψ, [γ]).
We have proved that for every [γ] ∈ Γ/ΓN ,

(43) Dt (Nε, [γ]) = ⋃
j∈Jt ,[γ]

B j ∩Dt (Nε, [γ]).

By comparison, it may not be true that (even if you replaceΦ by the smallerΨ)

Dt (Φ, [γ]) = ⋃
j∈Jt ,[γ]

B j ∩Dt (Φ, [γ]).

Now everything follows from this, the linear algebra lemma Lem.5.2 and the covering argument Lem.9.1. More details:
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Leb(Dt (Nε)) = ∑
[γ]∈Γ/ΓN

Leb(Dt (Nε, [γ]))

( Equa.(43) ) ≤ ∑
[γ]∈Γ/ΓN

∑
j∈Jt ,[γ]

Leb(Dt (Nε, [γ])∩B j )

≤ ∑
[γ]∈Γ/ΓN

∑
j∈Jt ,[γ]

Leb(Dt (Ψ, [γ])∩B j )

( Lem.5.2 and Equa.(42) ) ≤ ∑
[γ]∈Γ/ΓN

∑
j∈Jt ,[γ]

εLeb(B j )

( Lem.9.1 ) ≤εC0 Leb(D(3)
t (Φ)) ≤C0εLeb(D(3)) =C1εLeb(D).

�

The promised N ′
ε did not show up explicitly. You may take it to be p

(
(φ◦q)−1Φ

)
in light of the discussion above.

11. Step 10, linear expansion

Note that the discussion so far only uses

• the limit measure µ is unipotent-invariant;
• (C ,α)-good properties.

In particular, as long as µ can be shown to be unipotent invariant, the discussion above applies equally well if you replace atn by any
other sequences (gn) in G and exp(D) by any other bounded smooth curve/manifold in G equipped with a smooth measure.

Now we explain why Equa.(41) holds, for our particular choice of at and exp(D).
Recall that we may think of (the connected component of) H0 as the image of SL2(R) under the Adjoint representation. And K0

may be thought of as the image of SO2(R), {at } the image of bt := diag(e t ,e−t ).

LEMMA 11.1. Let V be an irreducible nontrivial representation of SL2(R). LetΩ be a nonempty open subset of SO2(R). Then for every
constant C > 0, there exists T0 > 0 (depending on C ,Ω, the choice of metric on V ) such that for every t > T0, every v 6=0 ∈V

sup
ω∈Ω

‖btω.v‖ ≥C ‖v‖ .

REMARK 11.2. After the proof is given, it should be clear that SL2(R) can be replaced by any other simple Lie group, SO2(R) replaced
by a maximal compact subgroup, bt replaced by any one-parameter diagonalizable subgroup that is stable under Cartan involution
associated with this maximal compact subgroup. Moreover, once V is fixed, C can be taken to be κ1eκ2|t | for some κ1,κ2 > 0 and the
condition t > T0 can be removed.

REMARK 11.3. A weaker statement, with “for every C > 0” replaced by "there exists some c > 0" (and ignore the t > T0 condition)
holds in much greater generality, see [RS18]. And this condition is sufficient to conclude the limit measure supports on a unique tube (see
[RZ16]).

PROOF OF EQUA.(41) ASSUMING LEM.11.1. Assume otherwise, find some γt ∈ Γ such that

at exp(D)g0γt .vH ⊂Φ
for t inside certain sequence tending to +∞.

Decompose V = V1
⊕

V2 in a H0-equivariant way such that V1 = V H0 , the vectors fixed by H0. Write πi for the projection V → Vi

w.r.t. this decomposition. Without loss of generality we assume V1 ⊥V2 by changing the Euclidean metric. Thus for t ∈ R, y ∈ D.

at exp(y)(g0γt .vH ) = at exp(y)(π1(g0γt .vH )+π2(g0γt .vH ))

=π1(g0γt .vH )+at exp(y)π2(g0γt .vH )

=⇒ ∥∥at exp(y)g0γt .vH
∥∥= ∥∥π1(g0γt .vH )

∥∥+∥∥at exp(y)π2(g0γt .vH )
∥∥ .

For the 2nd term, the above Lem.11.1 implies that for t large enough, for suitable choice of yt ,∥∥at exp(yt )π2(g0γt .vH )
∥∥≥ ∥∥π2(g0γt .vH )

∥∥ .

So at exp(yt ) action does not decrease the norm of g0γt .vH . SinceΦ is bounded, this implies that

(g0γt .vH ) is bounded.

But Γ.vH , and hence g0Γ.vH is discrete in VH . A discrete, bounded set has no choice but being finite. After passing to a subsequence,
we assume γt = γ1 for all t (in some infinite subsequence tending to +∞).

Now if g0γ1.vH ∉ V1, then π2(g0γ1.vH ) 6= 0. Take C2 > 0 such that every element in Φ has norm at most C2. Apply Lem.11.1 to

C = 1.1C2
∥∥π2(g0γ1.vH )

∥∥−1, then we find y ′
t , for t large enough, such that∥∥at exp(y ′

t )π2(g0γt .vH )
∥∥≥ 1.1C2

∥∥π2(g0γ1.vH )
∥∥−1 ∥∥π2(g0γt .vH )

∥∥= 1.1C2.

So at exp(y ′
t )g0γ1.vH can not live inΦ, a contradiction.

Thus g0γ1.vH ∈ V1, or in other words, g0γ1.vH is fixed by H0. Recall the stabilizer of vH in G is NG(H)(1), thus, g−1
0 H0g0 ⊂

γ1NG(H)(1)γ−1
1 ⊂ γ1NG(H)γ−1

1 .
A Lie algebra computation shows that Ad(g0)−1h0 is a maximal proper Lie subalgebra. Actually, the only non-zero and non-full

Ad(H0)-stable Lie subalgebra of sl3 is h0. Thus Ad(g−1
0 )h0 = Ad(γ1)h and g−1

0 H◦
0g0 = γ1Hγ−1

1 . In particular g−1
0 H◦

0g0 ∩Γ is a lattice in
g−1

0 H◦
0g0. This implies that Q0 ◦ g0 is proportional to a rational quadratic form, a contradiction.

�

PROOF OF LEM.11.1. Decompose V w.r.t. the bt action

V =V −⊕V 0 ⊕V +

into contracting/fixed/expanding subspaces. Namely, this decomposition is stable under bt action. Moreover V 0 =V {bt } and for some
c1,κ1 > 0,

‖bt .v‖ ≥c1eκ1t ‖v‖ , ∀v ∈V +;

‖bt .v‖ ≤c−1
1 e−κ1t ‖v‖ , ∀v ∈V −.
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Let π−,π0,π+ be the corresponding projections. We claim that there exists c2 > 0 such that

(44) sup
ω∈Ω

∥∥π+(ω.v)
∥∥≥ c2 ‖v‖ , ∀v ∈V.

Once this is done, the proof completes. It suffices to verify Equa.(44) under the assumption ‖v‖ = 1. If not true, then we can find a
sequence of unit vectors (vn) such that

sup
ω∈Ω

∥∥π+(ω.vn)
∥∥→ 0.

Let v∞ be any limit of (vn). SinceΩ is bounded, we have

π+(ω.v∞) = 0,∀ω ∈Ω.

In other words,
Ω.v∞ ⊂V −⊕V 0.

Since this is a condition defined by vanishing of some polynomials andΩ is Zariski dense in SO2(R), we have

SO2(R).v∞ ⊂V −⊕V 0.

Since w0 :=
[

0 1
−1 0

]
∈ SO2(R) and w0bt w−1

0 = b−t , we see that w0V − =V +, w0V 0 =V 0 and w0V + =V −. So

SO2(R).v∞ ⊂V 0.

So every vector in V 0 is fixed by SO2(R) and {bt }, which generate the full SL2(R). This is a contradiction. �

12. Exercises

12.1. An example of equidistribution of unipotent flows. Notations

• G = SL2(C), Γ= SL2(Z[i ]) and X :=G/Γ;

• U =
{

us =
[

1 s
0 1

] ∣∣∣∣ s ∈R
}

and x0 = [g0] ∈G/Γ.

Let (Sn) be a sequence of positive real numbers tending to +∞ such that the following limit exists:

µ := lim
Sn→+∞

1

Sn

∫ Sn

0
(us )∗δ[g0] ds.

Assume the fact that such a µ belongs to Prob(X )U .
Recall the definitions of H , T (H ,U ),... (see Lec.11, Def.1.6, Def.3.1). And VH , vH same as in Lec.12.

EXERCISE 12.1. Let H ∈H , H 6=G. Show that if µ(T (H ,U )) > 0, then there exists a bounded setΦ⊂VH and a sequence (γn) ⊂ Γ such
that

u[0,Sn ]g0γn .vH ⊂Φ.

EXERCISE 12.2. Same notations as the exercise above. Conclude that there exists γ ∈ Γ such that

u[0,+∞)g0γ.vH ⊂Φ.

EXERCISE 12.3. Same notations as the exercise above. Conclude that g−1
0 Ug0 ⊂ NG (γHγ−1)(1).

EXERCISE 12.4. Use exercises above to show that if x0 = [g0] ∉ [Sing(G ,U )]Γ, then

lim
Sn→+∞

1

Sn

∫ Sn

0
(us )∗δ[g0] ds = m̂G/Γ.

[Hint: use Lec.11, Thm.2.3 if it helps.]

EXERCISE 12.5. Conclude that if x0 = [g0] ∉ [Sing(G ,U )]Γ, then U .x0 is dense in G/Γ.

12.2. Homogeneous sets of bounded volume. Notations

• G := SLN (R) and Γ := SLN (Z).
• Fix a right G-invariant Riemannian metric on G , which induces Riemannian metrics on G/Γ and also on immersed subman-

ifolds. Volumes below are all induced from this.

For C > 0, let
A :={

H ≤G
∣∣ H is a closed connected subgroup of G , Vol(H/H ∩Γ) <∞.

}
AC :={

H ≤G
∣∣ H is a closed connected subgroup of G , Vol(H/H ∩Γ) <C .

}
DEFINITION 12.1. Given a sequence (Hn) of closed subgroups of G, we say that (Hn) converges iff for every (infinite) subsequence

(nk ) and hnk ∈ Hnk such that limk hnk exists, there exists h′
n ∈ Hn for each n, such that

lim
k

hnk = lim
n

h′
n .

EXERCISE 12.6. Given a sequence (Hn) of closed subgroups of G, there exists a subsequence that converges.

From now on we fix a convergent sequence (Hn). And assume each Hn is connected. Let

L :=
{

g ∈G
∣∣∣ g = lim

n
hn , ∃hn ∈ Hn

}
EXERCISE 12.7. Show that L is a closed subgroup.

EXERCISE 12.8. There exists a subsequence nk such that (hnk ) (the Lie algebra of Hnk ) converges.

From now on we assume (hn) converges to h∞.

EXERCISE 12.9. Find an example of (Hn) such that h∞ is not the Lie algebra of L.

Now we further assume that {Hn} ⊂AC0 for some C0 > 0.

EXERCISE 12.10. Show that under the assumption above, h∞ = Lie(L).
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EXERCISE 12.11. Show that (Hn ∩Γ) converges and its limit is given by

Γ∞ := {
γ ∈ Γ ∣∣ ∃n0, ∀n > n0, γ ∈ Hn ∩Γ}

.

EXERCISE 12.12. Show that VolHn converges to VolL in the weak∗ topology.

EXERCISE 12.13. Show that Γ∞ is a lattice in L. Indeed show that

Vol(L/Γ∞) ≤ limsupVol(Hn/Hn ∩Γ).

[Hint, consider compact parts of a fundamental domain]
It is a fact that once you know Γ∞ is a lattice in L, then it is finitely generated.

EXERCISE 12.14. Assume the fact above. Show that there exists n0 such that for all n > n0, Γ∩Hn ⊃ Γ∞.

Continuing this way, using more inputs from the theory of algebraic groups, one can show that

THEOREM 12.2 (Dani–Margulis). We have that

#
{

H ∩Γ ∣∣ H ∈AC0

}<∞.

EXERCISE 12.15. For H ∈A and g ∈G, show that

Vol(g HΓ/Γ) =
∥∥Ad(g ).vH

∥∥
‖vH‖ Vol(HΓ/Γ).

Here vH is a vector in ∧dim Hsln defined by v1 ∧ ...∧ vdim H where (v1, ..., vdim H ) is a basis for h, the Lie algebra of H .

EXERCISE 12.16. Assume the theorem above, show that Γ.vH is a discrete subset of ∧dim Hsln .

12.3. Orbit counting and equidistribution. Notations

• G = SL2(R), Γ= SL2(Z), H =
{[

x 2y
y x

] ∣∣∣∣ x2 −2y2 = 1

}
;

• V := {
2-by-2 real matrices with trace 0

}
;

• V (Z) := {
2-by-2 integer matrices with trace 0

}
• M0 :=

[
0 2
1 0

]
and p0(x) := x2 −2;

• for a matrix M , its characteristic polynomial is denoted by charM (x) := det(xI −M) = x2 −Tr(M)x +det(M);
• Xp0 (R) := {

M ∈V , charM (x) = p0(x)
}
, Xp0 (Z) := {

M ∈V (Z), charM (x) = p0(x)
}
;

• for a 2-by-2 matrix M =
[

a b
c d

]
, define ht(M) :=

p
a2 +b2 + c2 +d 2;

• BR := {
M ∈ Xp0 (R)

∣∣ ht(M) ≤ R
}
.

EXERCISE 12.17. Show that every pair of matrices M1, M2 ∈ Xp0 (R), there exists g ∈G such that g M1g−1 = M2.

Let G acts on Xp0 (R) by g .M := g M g−1. The above exercise shows that this action is transitive.

EXERCISE 12.18. The stabilizer of M0 in G is equal to H.

EXERCISE 12.19. H ∩Γ is a lattice in H.

EXERCISE 12.20. Show that the action of Γ on Xp0 (Z) is transitive.

[Hint: Z[
p

2] is a PID]
Further notations

• mG/H is a G-invariant locally finite measure on G/H ;
• similarly, mG and mH denote Haar measures on G and H respectively.

Note that G and H are unimodular: left Haar measures are the same as right Haar measures.

DEFINITION 12.3. We say that a triple (mG ,mH ,mG/H ) is compatible iff for every compactly supported function f ∈Cc (G), we have

(45)
∫

G/H

∫
H

f (g h)mH (h)mG/H ([g ]) =
∫

G
f (g )mG ([g ]).

EXERCISE 12.21. Show that for every triple of Haar measures (mG ,mH ,mG/H ), there exists a constant c > 0 such that for every f ∈
Cc (G), ∫

G/H

∫
H

f (g h)mH (h)mG/H ([g ]) = c ·
∫

G
f (g )mG ([g ]).

From now on we fix the unique triple (mG ,mH ,mG/H ) satisfying

1. (mG ,δΓ,m̂G/Γ) and (mH ,δH∩Γ,m̂H/H∩Γ) are compatible. Here δΓ (resp. δH∩Γ) denotes the counting measure on Γ (resp.
H ∩Γ).

2. (mG ,mH ,mG/H ) is compatible.

Its existence is guaranteed by the Exer.12.21 above.

EXERCISE 12.22. Find the asymptotics of

mG/H (BR ) := mG/H
({

[g ] ∈G/H
∣∣ ht(g .M0) ≤ R

})
.

DEFINITION 12.4. Define ϕR : G/Γ→R by
ϕR ([g ]) := #

(
gΓ.M0 ∩BR

)
.

We say that 1
mG/H (BR )ϕR converges to 1 weakly iff for all ψ ∈Cc (G/Γ),

(46) lim
R→+∞

1

mG/H (BR )

∫
G/Γ

ϕR ([g ])ψ([g ])m̂G/Γ([g ]) =
∫
ψ([g ])m̂G/Γ([g ]).
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EXERCISE 12.23. Show that if 1
mG/H (BR )ϕR converges to 1 weakly then for every [g ] ∈G/Γ,

lim
R→+∞

1

mG/H (BR )
ϕR ([g ]) = 1.

In particular, in light of Exer.12.20,
#Xp0 (Z)∩BR ∼ mG/H (BR ).

[Hint: use Exer.12.22].

EXERCISE 12.24. Show that the left hand side of Equa.(46) (excluding the limit) is equal to

1

mG/H (BR )

∫
{g .M0∈BR }

(∫
ψ(x) g∗m̂HΓ/Γ(x)

)
mG/H ([g ])

EXERCISE 12.25. Use “linearization technique” to show that for every sequence (gn) such that ([gn]) diverges in G/H, we have

lim
n→+∞(gn)∗m̂HΓ/Γ = m̂G/Γ.

EXERCISE 12.26. Use Exer.12.25 to conclude that 1
mG/H (BR )ϕR converges to 1 weakly.



CHAPTER 13

Quantitative Oppenheim I, reducing to dynamics

Back to the Top.
Main reference: [EMM98, Section 3].
Notations

• Let Q0(x1, x2, x3, x4) := 2x1x4 +x2
2 +x2

3 , a real quadratic form of signature (3,1) on R4.
• Let (e1, ...,e4) be the standard basis of R4; and for a vector v, define its coefficients by v = ∑

(v)i ei and we also write v =
((v)1, ..., (v)4).

• Let (f1, ..., f4) be another ONB(=orthogonal normal basis) defined by f2 = e2, f3 = e3 and f1 = e1+e4p
2

, f4 = e1−e4p
2

. If v =∑
ai fi , we

also write v = (a1, ..., a4)f.
• One can verify that Q0((x1, ..., x4)f) = x2

1 +x2
2 +x2

3 −x2
4 .

• K := SOQ0 (R)∩SO4(R).
• at := diag(e−t ,1,1,e t ), contained in SOQ0 (R).

1. Detect points by probabilistic methods

Assume Q0 ◦ g0 is irrational. Define
V(a,b)(Z) := {

v ∈ g0.Z4 ∣∣ Q0(v) ∈ (a,b)
}

,

NT := #Va,b(Z,T ), Va,b(Z,T ) := {
v ∈V(a,b)(Z)

∣∣ ‖v‖ ≤ T
}

.

Consider the function
1ä(x, y) := 1(1,2](x) ·1(a,b)(y).

Hence

N2T −NT = ∑
v∈g0.Z4

1ä
(‖v‖

T
,Q0(v)

)
.

Find a compactly supported continuous function h approximating 1ä from above. Then one can find some (non-negative) f ∈Cc (R>0×
R3) such that

(47) h(x, y) = 1

x2

∫
f (x, w2, w3, y ′) |dw2∧dw3|

where y ′ := y−w2
2−w2

3
2x .

1.1. A coarse upper bound. By abbreviating Va,b(Z,2T −T ) :=Va,b(Z,2T ) \Va,b(Z,T ), we have

(48)

N2T −NT ≤ ∑
v∈g0.Z4,v∈Va,b (Z,2T−T )

h

(‖v‖
T

,Q0(v)

)

= ∑
v∈g0.Z4,v∈Va,b (Z,2T−T )

T 2

‖v‖2

∫
f

(
‖v‖
T

, w2, w3,
Q0(v)−w2

2 −w2
3

2‖v‖T −1

)
|dw2∧dw3|

Each summand here is either 0 or ≥ 1 since we are keeping the index v ∈Va,b(Z,2T −T ).
Now we need the following lemma, to be proved later (see Lem.2.10 where this is proved).

LEMMA 1.1. Given f ∈Cc (R>0 ×R3) and ε ∈ (0,1), there exists T0 = T0( f ,ε) > 0 such that for every T > T0, for every v ∈R4 we have∣∣∣∣ 1

2C4
T 2

∫
f (alnT k.v)m̂K(k)− T 2

‖v‖2

∫
f

(‖v‖
T

, w2, w3, w4

)
|dw2∧dw3|

∣∣∣∣< ε
where

w4 := Q0(v)−w2
2 −w2

3

2‖v‖T −1

is a function in (w2, w3), for every fixed v and T .

Apply Lem.1.1 with some ε< 0.5, then for T sufficiently large, each v ∈Va,b(Z,2T −T ), either

T 2

‖v‖2

∫
f

(
‖v‖
T

, w2, w3,
Q0(v)−w2

2 −w2
3

2‖v‖T −1

)
= 1

2C4
T 2

∫
2 f (at k.v)m̂K(k) = 0

or ≥ 0.5 .
Therefore

(49)

N2T −NT ≤ ∑
v∈g0.Z4,v∈Va,b (Z,2T−T )

2 · 1

2C4
T 2

∫
f (at k.v)m̂K(k)

≤ ∑
v∈g0.Z4

2
1

2C4
T 2

∫
f (at k.v)m̂K(k) = 2

1

2C4
T 2

∫
f̃ (at kg0.Z4)m̂K(k).

where
f̃ : X4 →R defined by f̃ (Λ) := ∑

v∈Λ
f (v).

If f̃ were a bounded function, then immediately we see that for some constant C =C ( f ) > 0,

N2T −NT ≤ T 2C =⇒ N2n T0 ≤ T 2
0 C (1+41 + ...+4n−1)+NT0 =

1−4n

1−4
T 2

0 C +NT0 ≤ (2nT0)2C +NT0 .

75
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This shows that for T large,

NT ≤ 2C T 2.

Unfortunately our f̃ is not bounded. Nevertheless we still have

THEOREM 1.2. There exists a constant C =C ( f ) > 0 such that∫
f̃ (at kg0.Z4)m̂K(k) ≤C

for all t > 0.

By arguments outlined above and Thm.1.2 we get

THEOREM 1.3. There exists a constant C > 0 such that NT ≤C T 2 for T sufficiently large.

1.2. The exact upper/lower bound. Equipped with Thm.1.3, let us revisit Equa.(48):

(50)

N2T −NT

T 2 ≤ T −2
∑

v∈g0.Z4,v∈Va,b (Z,2T )

h

(‖v‖
T

,Q0(v)

)

= T −2
∑

v∈g0.Z4,v∈Va,b (Z,2T )

T 2

‖v‖2

∫
f

(‖v‖
T

, w2, w3,Q0(v)

)
|dw2∧dw3| .

Fix an ε> 0, the range of T such that Lem.1.1 is not applicable is bounded. Thus

(51)
N2T −NT

T 2 ≤ T −2
∑

v∈g0.Z4,v∈Va,b (Z,2T )

(
1

2C4
T 2

∫
f (at k.v)m̂K(k)+O(ε)

)
+Oε(T −2).

By Thm.1.3, the number of indices is bounded by C (2T )2, hence

(52)

N2T −NT

T 2 ≤ T −2

 ∑
v∈g0.Z4,v∈Va,b (Z,2T )

1

2C4
T 2

∫
f (at k.v)m̂K(k)

+Oε(T −2)+O(ε)

≤ 1

2C4

( ∑
v∈g0.Z4

∫
f (at k.v)m̂K(k)

)
+Oε(T −2)+O(ε)

= 1

2C4

∫
f̃ (at kg0Z

4)m̂K(k)+Oε(T −2)+O(ε)

Hence (let ε→ 0 after taking the limit limT )

limsup
T→+∞

N2T −NT

T 2 ≤ lim
t→+∞

∫
1

2C4
f̃ (at kg0Z

4)m̂K(k).

That the RHS is a true limit is justified below.
The exact lower bound is proved similarly.

THEOREM 1.4. Assume Q0 ◦ g0 is not rational, then for every f ∈Cc (R4),

lim
t→+∞

∫
f̃ (at kg0Z

4)m̂K(k) =
∫

X4

f̃ (x)m̂X4 (x) =C6

∫
R4

f (v)dv

where C6 > 0 depending only on the dimension.

Let us evaluate
∫
R4 f (v)dv for our f . By change of variables y ′ =:

y−w2
2−w2

3
2x ,

∫
f (v)dv =

∫
f (x, w2, w3, y ′)dxdy′ dw2 dw3 =

∫
1

2x
f (x, w2, w3,

y −w2
2 −w2

3

2x
)dxdydw2 dw3 .

where we have used

dy′ = dy−2w2 dw2−2w3 dw3

2x
− dx

2x2 (y −w2
2 −w2

3 ).

Recall Equa.(47), we have ∫
f (v)dv =

∫
x

2
h(x, y)dxdy.

As h(x, y) approximates 1ä we get ∫
x

2
h(x, y)dxdy →

∫ b

y=a

∫ 2

x=1

x

2
dxdy = 22 −1

4
(b −a).

Thus, by collecting the constants C7 := 1
2C4

C6
22−1

4 ,

lim
T→+∞

N2T −NT

T 2 =C7(b −a).

Now a geometric series argument shows that

COROLLARY 1.5.

lim
T→+∞

NT

T 2 = 1

3
C7(b −a).
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2. Proof of the Lemma

2.1. Nontrivial contribution to the integral.

DEFINITION 2.1. For (x, y, z) ∈R3 with x 6= 0 and a ∈R, we let

φa(x, y, z) := a − y2 − z2

2x
,

in other words, φa(x, y, z) is the unique real number such that

Q0
(
x, y, z,φa(x, y, z)

)= a.

DEFINITION 2.2. Given f ∈Cc (R>0 ×R×R×R), we fix C1 =C1( f ) > 1 such that

Supp( f ) ⊂ (C−1
1 ,C1)× (−C1,C1)3.

Also fix C2 > |a0|, |b0|.
The following two directly follow from the definition.

LEMMA 2.3. Let v6=0 ∈R4 and T > 1. Let (w2, w3) ∈R2 be such that

f

(‖v‖
T

, w2, w3,φQ0(v)(
‖v‖
T

, w2, w3)

)
6= 0,

then

1. C−1
1 T ≤ ‖v‖ ≤C1T and |w2|, |w3| ≤C1;

2.
∣∣∣φQ0(v)(

‖v‖
T , w2, w3)

∣∣∣≤C1.;

3. |Q0(v)| ≤ 4C 2
1 .

For a vector w, w(i ) ∈R is defined by w =∑
w(i )ei .

LEMMA 2.4. Let v6=0 ∈R4 and T > 1. Let w ∈ K .v. If f (alnT .w) 6= 0, then

1. C−1
1 T ≤ w(1) ≤C1T , |w(2)|, |w(3)| ≤C1 and |w(4)| ≤C1T −1;

2. ‖v‖ ≤ 2C1T ;
3. ‖v‖ ≥C−1

1 T ;
4. |Q0(v)| ≤ 4C 2

1 .

PROOF. For item 3, ‖v‖ = ‖w‖ ≥ w(1) ≥C−1
1 T .

For item 4, Q0(v) =Q0(w) = w(1)w(4)+w(2)2 +w(3)2 ≤ 2C 2
1 +C 2

1 +C 2
1 = 4C 2

1 . �

2.2. Representative in a K -orbit. By working with the basis f, one sees that for every v ∈R4, there exists kv ∈ K such that

kv.v = (u1,0,0,u4)f for some u1,u4 ≥ 0.

Indeed, if we set

r1(v) := ‖v‖+Q0(v)

2
, r2(v) := ‖v‖−Q0(v)

2
or equivalently,

r1(v) := vf(1)2 +vf(2)2 +vf(3)2, r2(v) := vf(4)2

where we assume v = (vf(1), ...,vf(4))f. Then there exists k ∈ K such that

k.v = (
p

r1,0,0,
p

r2)f =: v∗.

To summarize the discussion in the basis e:

LEMMA 2.5. For every v ∈ R4 there exists a unique v∗ ∈R4 satisfying

1. Q0(v∗) =Q0(v);
2. ‖v∗‖ = ‖v‖;
3. v∗(1) ≥ |v∗(4)| and v∗(2) = v∗(3) = 0.

Also v∗ ∈ K .v.

What we are going to need is the following slightly perturbed version.

LEMMA 2.6. Let v ∈R4 and (w2, w3) ∈R satisfying |w2|, |w3| ≤C1. Assume ‖v‖2 ≥Q0(v)+4C 2
1 . Then there exists a unique v∗(w2, w3) =

w ∈R4 such that

1. Q0(w) =Q0(v);
2. ‖w‖ = ‖v‖;
3. w(1) ≥ |w(4)| and w(2) = w2,w(3) = w3.

Also w ∈ K .v.

SKETCH OF PROOF. Indeed under the assumption above∣∣∣∣∣Q0(v)−w2
2 −w2

3

2

∣∣∣∣∣≤ 1

2
(Q0(v)+2C 2

1 )

and
‖v‖2 −w2

2 −w2
3 ≥Q0(v)+4C 2

1 −C 2
1 −C 2

1 =Q0(v)+2C 2
1 .

Hence the equation {
x y = Q0(v)−w2

2−w2
3

2

x2 + y2 = ‖v‖2 −w2
2 −w2

3

admits a unique solution with x ≥ |y |.
Here is a picture (x = w1, y = w4)
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�

2.3. Approximates I, the points.

LEMMA 2.7. Assumption as in Lem.2.3. Further assume T ≥ 8C 3
1 and T 2 ≥ 16C 4

1 . Define w = v∗(w2, w3) as in Lem.2.6. Then for
C3 = 46C 7

1 ,

dist∞
((‖v‖

T
, w2, w3,φQ0(v)(

‖v‖
T

, w2, w3)

)
,alnT .w

)
≤C3T −2.

Note that T ≥ 8C 3
1 =⇒ ‖v‖ ≥ 4C 2

1 +4C 2
1 ≥Q0(v)+4C 2

1 by Lem.2.3. Thus Lem.2.6 is applicable.

PROOF. First we have

|w(4)|2 ≤ |w(1)| |w(4)| = ∣∣Q0(v)−w2
2 −w2

3

∣∣≤ 4C 2
1 +2C 2

1 = 6C 2
1 .

Hence the difference of the first coordinate:∣∣‖v‖2 −w(1)2∣∣= w(2)2 +w(3)2 +w(4)2 ≤ 8C 2
1

=⇒ ∣∣T −1 ‖v‖−T −1w(1)
∣∣≤ T −1 8C 2

1

‖v‖+w(1)
≤ T −1 8C 2

1

‖v‖ ≤ 8C 3
1 T −2 ≤C3T −2.

From here we also see that

|w(1)| ≥ ‖v‖−8C 3
1 T −1 ≥ 1

2
C−1

1 T + (
1

2
C−1

1 T −8C 3
1 T −1) ≥ 1

2
C−1

1 T.

Here we are using the assumption T 2 ≥ 16C 4
1 =⇒ 1

2C−1
1 T −8C 3

1 T −1 ≥ 0.
Now the difference of the last coordinate (note that w2 = w(2) and w3 = w(3) from Lem.2.6)∣∣∣∣Q0(v)−w(2)2 −w(3)2

2‖v‖T −1 − Q0(v)−w(2)2 −w(3)2

2w(1)T −1

∣∣∣∣
≤1

2
(6C 2

1 )T

∣∣∣∣ 1

‖v‖ − 1

w(1)

∣∣∣∣= (6C 2
1 )T

2

|‖v‖−w(1)|
‖v‖w(1)

≤ (6C 2
1 )T

2

8C 3
1 T −1

1/2C−2
1 T 2

= 48C 7
1 T −2 ≤C3T −2.

�

LEMMA 2.8. Assumption as in Lem.2.4. Define w2 := w(2) and w3 := w(3). Then for C3 = 48C 7
1 ,

dist∞
((‖v‖

T
, w2, w3,φQ0(v)(

‖v‖
T

, w2, w3)

)
,alnT .w

)
≤C3T −2.

PROOF. The difference of the first coordinate:∣∣‖v‖2 −w(1)2∣∣= w(2)2 +w(3)2 +w(4)2 ≤ 3C 2
1

=⇒ ∣∣T −1 ‖v‖−T −1w(1)
∣∣≤ T −1 3C 2

1

w(1)
≤ 3C 3

1 T −2 ≤C3T −2.

And the difference of the last coordinate ∣∣∣∣Q0(v)−w(2)2 −w(3)2

2‖v‖T −1 − Q0(v)−w(2)2 −w(3)2

2w(1)T −1

∣∣∣∣
≤T

2
(6C 2

1 )

∣∣∣∣ 1

‖v‖ − 1

w(1)

∣∣∣∣= (6C 2
1 )T

2

|‖v‖−w(1)|
‖v‖w(1)

≤ (6C 2
1 )T

2

3C 3
1 T −1

C−2
1 T 2

= 9C 7
1 T −2 ≤C3T −2.

�

2.4. Approximates II, the measures. Let S(r ) be the sphere of radius r in R3 centered at the origin. Let m̂S(r ) be the normalized
(to be a probability measure) volume measure on S(r ).

Assume r1(v) ≥ 2C 2
1 . For (x2, x3) ∈R2 with |x2|, |x3| ≤C1, there exists a unique x1 > 0 such that

x2
1 +x2

2 +x2
3 = r1(v).

Let D(C1) be the image of {(x2, x3), |x2|, |x3| ≤C1} in S(
p

r1) thus defined. And identify |dx2∧dx3| ||xi |≤C1 as a measure on D(C1) ⊂ S(
p

r1)
by this. Equivalently one may first restrict the differential form dx2∧dx3 to D(C1) and then take the measure associated with it.
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LEMMA 2.9. Let v ∈R4 be satisfying ‖v‖2

2 ≥ |Q0(v)| and ‖v‖2 ≥ 16C 2
1 .∥∥∥‖v‖2 m̂S(

p
r1) −2C4 |dw2∧dw3|

∥∥∥
D(C1)

≤ 1

‖v‖2 (C5Q0(v)+C5)

where C4 > 0 is a constant depending only on the dimension and C5 > 1 depends on C1. See Equa.(53), (54) below.

Note that our assumption implies that r1(v) = 1/2(‖v‖2 +Q0(v)) ≥ 4C 2
1 . Thus the paragraph above the proposition makes sense.

PROOF. First let us write m̂S(
p

r1) in terms of differential forms. By taking the differential

x2
1 +x2

2 +x2
3 = r 2 =⇒ 2x1 dx1+2x2 dx2+2x3 dx3 = 2r dr.

Thus

dx1∧dx2∧dx3 = r dx2∧dx3

x1
∧dr

So up to constant (depending possibly on r ), the spherical measure can be induced from r dx2 ∧dx3
x1

. To make it have total mass inde-
pendent of r , we consider

dx1∧dx2∧dx3 = dx2∧dx3

r x1
∧ r 2 dr.

Since the volume of ball of radius R is some constant multiple of R3/3 = ∫ R
0 r 2 dr, there exists some constant C4 > 0 depending only on

the dimension such that

(53) m̂S(
p

r1) =C4
dx2∧dx3p

r1x1
.

By assumption,

2r1 = ‖v‖2 +Q0(v) ≥ ‖v‖2 −|Q0(v)| ≥ 1

2
‖v‖2 =⇒ r1 ≥ 4C 2

1 .

Thus for (x1, x2, x3) ∈ S(
p

r1),

2
p

r1x1 = 2
p

r1

√
r1 −x2

2 −x2
3 ≥ ‖v‖

√
r1 −2C 2

1 ≥ ‖v‖
√

1

2
r1 ≥

‖v‖2

8
.

On the other hand ∣∣‖v‖2 −2r1
∣∣= |Q0(v)|

and

∣∣2r1 −2
p

r1x1
∣∣= 2

p
r1

∣∣∣∣∣∣∣
r1 − (r1 −x2

2 −x2
3)

p
r1 +

√
r1 −x2

2 −x2
3

∣∣∣∣∣∣∣≤ 2
∣∣x2

2 +x2
3

∣∣≤ 4C 2
1 .

Therefore, when restricted to D(C1), we have∣∣∣‖v‖2 m̂S(
p

r1) −2C4 |dx2∧dx3|
∣∣∣= 2C4

∣∣∣∣ ‖v‖2

2
p

r1x1
−1

∣∣∣∣ |dx2∧dx3|

= 2C4

∣∣∣∣‖v‖2 −2
p

r1x1

2
p

r1x1

∣∣∣∣ |dx2∧dx3|

≤ 2C4

∣∣∣∣∣ |Q0(v)|+4C 2
1

1
4 ‖v‖2

∣∣∣∣∣ |dx2∧dx3|

Thus if integrating a function taking value in [−M , M ], the difference is at most

2C4

∣∣∣∣∣Q0(v)+4C 2
1

1
8 ‖v‖2

∣∣∣∣∣ (2C1)2 ·M = ‖v‖−2 · ∣∣64C4C 2
1 (|Q0(v)|+4C 2

1 )
∣∣ ·M .

Taking

(54) C5 := 256C4C 4
1

completes the proof. �
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2.5. Proof. Fix v ∈R4, we identify S(r ) with a subset of R4 by embedding

(x1, x2, x3) 7→ (x1, x2, x3,
√

r2(v))f.

Let us state Lem.1.1 again:

LEMMA 2.10. Given f ∈Cc (R>0 ×R3) and ε ∈ (0,1), there exists T0 = T0( f ,ε) > 0 such that for every T > T0, for every v ∈R4 we have∣∣∣∣ 1

2C4
T 2

∫
f (alnT k.v)m̂K(k)− T 2

‖v‖2

∫
f

(‖v‖
T

, w2, w3, w4

)
|dw2∧dw3|

∣∣∣∣< ε
where

w4 := Q0(v)−w2
2 −w2

3

2‖v‖T −1

is a function in (w2, w3), for every fixed v and T .

PROOF. We are going to choose some T0 ≥ 10C 3
1 .

Rewrite
1

2C4
T 2

∫
f (alnT k.v)m̂K(k) = 1

2C4
T 2

∫
f (alnT .w)m̂K.v(w)

By Lem.2.4, 2.6, if T ≥ T0, by change of variable w 7→ (w2, w3) := (w(2),w(3)):

1

2C4
T 2

∫
f (alnT .w)m̂K.v(w) = 1

2C4
T 2

∫
f (alnT .w)6=0

f (alnT .w)m̂K.v(w)

= 1

2C4
T 2

∫
D(C1)

f (alnT .v∗(w2, w3))m̂S(
p

r1)(w2, w3).

Note that when f (alnT k.v) 6= 0 for some k ∈ K , T ≥ 10C 3
1 =⇒ ‖v‖2 ≥Q0(v)+4C 2

1 by Lem.2.4. So Lem.2.6 is applicable to v and (w2, w3) :=
(w(2),w(3)). Moreover, Lem.2.6 implies that w = v∗(w(2),w(3)).

By Lem.2.3, the RHS is equal to

T 2

‖v‖2

∫
f

(‖v‖
T

, w2, w3, w4

)
|dw2∧dw3| = T 2

‖v‖2

∫
D(C1)

f

(‖v‖
T

, w2, w3, w4

)
|dw2∧dw3|

Recall from Lem.2.3 and 2.4 that when f (alnT .w) 6= 0 or when f
( ‖v‖

T , w2, w3, w4

)
6= 0, we always have

1

C1
T ≤ ‖v‖ ≤ 2C1T

and

(55) |Q0(v)| ≤ 4C 2
1 .

Now it suffices to show that∣∣∣∣‖v‖2
∫

D(C1)
f (alnT .w)m̂S(

p
r1)(w2, w3)−2C4

∫
D(C1)

f

(‖v‖
T

, w2, w3, w4

)
|dw2∧dw3|

∣∣∣∣< ε.

By Lem.2.7 and 2.8, for T large enough,∣∣∣∣2C4

∫
D(C1)

f (alnT .w) |dw2∧dw3|−2C4

∫
D(C1)

f

(‖v‖
T

, w2, w3, w4

)
|dw2∧dw3|

∣∣∣∣< 0.5ε.

By Lem.2.9 and Equa.(55), for T large enough,∣∣∣∣‖v‖2
∫

D(C1)
f (alnT .w)m̂S(

p
r1)(w2, w3)−2C4

∫
D(C1)

f (alnT .w) |dw2∧dw3|
∣∣∣∣< 0.5ε.

Combining these two, we are done.
�

3. Exercises



CHAPTER 14

Quantitative Oppenheim II, height function and nondivergence

Back to the Top.
Main reference: [EMM98].
If you are new to this circle of ideas, a first example to keep in mind maybe : at := diag(e t ,e−t ), K := SO2(R), X = X2. Most arguments

are trivialized here, yet you could see the main idea.
Notations

• Q0(x1, x2, x3, x4) := 2x1x4 +x2
2 +x2

3 real quadratic form of signature (3,1) on R4.
• Let (e1, ...,e4) be the standard basis of R4; and for a vector v , define its coefficients by v = ∑

(v)i ei and we also write v =
((v)1, ..., (v)4).

• Let (f1, ..., f4) be another ONB(=orthogonal normal basis) defined by f2 = e2, f3 = e3 and f1 = e1+e4p
2

, f4 = e1−e4p
2

. If v =∑
ai fi , we

also write v = (a1, ..., a4)f.
• One can verify that Q0((x1, ..., x4)f) = x2

1 +x2
2 +x2

3 −x2
4 .

• K := SOQ0 (R)∩SO4(R).
• at := diag(e−t ,1,1,e t ), contained in SOQ0 (R).

1. Outline of the proof

Recall by last lecture, it remains to show the following

THEOREM 1.1. Let f be a compactly supported continuous function on R4 and let f̃ : X4 → R be its Siegel transform. Let g0 ∈ G be
such that Q0 ◦ g0 is irrational. Then

lim
t→+∞

∫
K

f̃ (at kg0Z
4)m̂K (k) =

∫
f̃ (x)m̂X4 (x).

As we explained, the difficulty here is that f̃ is usually an integrable but unbounded function. And it suffices to show that the
contribution of the part outside a large compact set is small. The following observation reduces the general task to a rather special
function.

DEFINITION 1.2. For a latticeΛ≤R4, let

ht∞(Λ) := max
i=1,...,3

sup
∆∈Primi (Λ)

1

‖∆‖ = max
i=1,...,3

(sys(i )(Λ))−1.

LEMMA 1.3. Let f be a bounded, non-negative function with compact support on R4. Then there exists a constant C1 = C1( f ) > 1
such that

f̃ (Λ) ≤C1 ·ht∞(Λ), ∀Λ ∈ X4.

Proof is left as an exercise.

THEOREM 1.4. For every ε> 0, there exists a compact set Cε of X4 such that for all t > 0,∫ (
ht∞ ·1X4\Cε

)
(at kg0Z

4)m̂K (k) ≤ ε.

PROOF OF THM.1.1 ASSUMING THM.1.4. Without loss of generality assume f ≥ 0.
Fix ε> 0, choose Cε ⊂ X4 as in Thm.1.4. Choose a compactly supported continuous function 1 ≥ϕε ≥ 1Cε . Thus by equidistribution

theorem obtained in Ch.12, Thm.1.2.

lim
t→+∞

∫ (
f̃ ·ϕε

)
(at kg0Z

4)m̂K (k) =
∫ (

f̃ ·ϕε
)

(x)m̂X4 (x).

On the other hand by Thm.1.4 and Lem.1.3

limsup
t→+∞

∫ (
f̃ · (1−ϕε)

)
(at kg0Z

4)m̂K (k) ≤ limsup
t→+∞

∫ (
C1 ht∞ ·1X4\Cε

)
(at kg0Z

4)m̂K (k)

≤C1ε.

Combining both and letting ε→ 0 we are done.
�

In fact, something stronger than Thm.1.4 will be proved.

PROPOSITION 1.5. For δ ∈ (0,1) (we only need for some δ> 0) andΛ0 ∈ X4, there exists C2 =C2(δ,Λ0) > 0 such that for all t > 0∫
ht1+δ

∞ (at k.Λ0)m̂K (k) ≤C2.

This will be deduced from the following two propositions.

PROPOSITION 1.6. For every ε> 0, there exist C4(ε) > 1 and t0(ε) > 0 such that for allΛ ∈ X4 (this is important!), we have∫
htnew
δ (at0(ε)k.Λ)m̂K (k) ≤ εhtnew

δ (Λ)+C4(ε)

where htnew
δ : X4 →R>0 is some function satisfying

C−1
5 ht1+δ

∞ ≤ htnew
δ ≤C5 ht1+δ

∞ .

81
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Actually, we will find constants c0 > 0 and κi > 0 for i = 0,1,2,3,4 such that

htnew
δ (Λ) = ∑

i=1,2,3
cκi

0 (sys(i )(Λ))−1−δ.

To yield the result by applying this operator repeatedly, we need the following:

PROPOSITION 1.7. For every open neighborhood V of identity in H, there exists a neighborhood U of identity in K such that for all
t , s ≥ 0

atU as ⊂ K ·V ·at+s ·K .

PROOF OF PROP.1.5. From the description of htnew
δ as in Prop.1.6, we can find V0, an open neighborhood of identity in H , such

that
1

2
htnew
δ (Λ) ≤ htnew

δ (v.Λ) ≤ 2htnew
δ (Λ), ∀v ∈V0, Λ ∈ X4.

Find U0 by Prop.1.7. Let ε := 1
4 m̂K (U0). Applying Prop.1.6 we get some C4, t0. Let C6 := C4

m̂K (U0) .
FixΛ0 ∈ X4, define a continuous function φ : G →R>0 by

φ(g ) :=
∫

htnew
δ (g k.Λ0)m̂K (k).

Thus it suffices to show that φ(at ), as t varies in (0,+∞), is bounded by Prop. 1.6.
The function φ enjoys the following properties

1. φ is bi-K -invariant;
2. for every v ∈V0 and g ∈G , 1

2φ(g ) ≤φ(v g ) ≤ 2φ(g ).

Combined with Prop.1.7, we see that for all t ≥ t0,

φ(at0 kat−t0 ) ≥ 1

2
φ(at ).

Also observe that
1

m̂K (U0)

∫
U0

φ(at0 kg )m̂K (k) ≤ 1

m̂K (U0)

∫
K
φ(at0 kg )m̂K (k)

≤ 1

m̂K (U0)
·
(

1

4
m̂K (U0)φ(g )+C4

)
=1

4
φ(g )+C6.

Therefore, for t > t0,

φ(at ) = 1

m̂K (U0)

∫
U0

φ(at )m̂K (k)

≤ 2
1

m̂K (U0)

∫
U0

φ(at0 kat−t0 )m̂K (k)

≤ 1

2
φ(at−t0 )+C6.

Now, for t > 0, choose the unique nt ∈Z≥0 such that t ′ := t −nt t0 ∈ (0, t0]. By applying the above inequality nt times we get

φ(at ) ≤ 1

2nt
φ(at ′ )+C6(1+ 1

2
+ (

1

2
)2 + ...)

Hence φ(at ), as t varies in (0,+∞), is bounded. �

2. Wavefront lemma

We explain how Prop.1.7 is proved.

PROOF. I am pretending K = SO4(R) here. The justification of the arguments here without this false assumption is left to you.
Every matrix g of determinant one can be written as

g = k1dk2, ki ∈ SOn(R), d is a diagonal matrix.

The order of the diagonal entries of d can be permuted by changing k1,k2. The middle matrix is uniquely determined if we further
assume

d = diag(d1, ...,dn), with d1 ≥ d2 ≥ ... ≥ dn > 0.

We let αi (g ) := d1 · ... ·di . It suffices to show that, when k ∈ K is close to identity, for every i , αi (at1 kat2 ) is closed to αi (at1+t2 ) multi-
plicatively.

To do this, note that
αi (g ) = sup

v∈∧iRn , ‖v‖=1

∥∥g .v
∥∥= sup

v,w∈∧iRn , ‖v‖=‖w‖=1

∣∣〈g .v,w〉∣∣ .

For ε ∈ (0,1), choose U =U (ε) ⊂ K such that for all i ,

|〈u.e1 ∧ ...∧ei ,e1 ∧ ...∧ei 〉| ≥ 1

1+ε .

Now take u ∈U . On the one hand, ∣∣〈at1 uat2 .v,w〉∣∣= ∣∣〈uat2 .v,at1 .w〉∣∣
≤∥∥at2 .v

∥∥ ·∥∥at1 .w
∥∥≤αi (at1+t2 ).

On the other hand, ∣∣〈at1 uat2 .e1 ∧ ...∧ei ,e1 ∧ ...∧ei 〉
∣∣

=αi (at1+t2 ) |〈u.e1 ∧ ...∧ei ,e1 ∧ ...∧ei 〉| ≥ 1

1+εαi (at1+t2 ).

So we are done.
�
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3. The height function

Prop.1.6 relies on the following proposition on representations. It is here that we are avoiding the case of signature (2,1) and (2,2).

PROPOSITION 3.1. For every ε> 0 there exists t1 = t1(ε) > 0 such that for all t ≥ t1, δ ∈ (0,1) and for all pure wedges v6=0 ∈∧iRn (n = 4
here), we have ∫

‖at k.v‖−1−δ m̂K (k) ≤ ε‖v‖−1−δ .

PROOF. Omitted for now. �

A “pure wedge” (also called “decomposable vector") refers to a vector v ∈∧iRn that can be written as v1 ∧ ...∧ vk for some vi ∈Rn .

3.1. Preparations. Fix ε ∈ (0,1), find t1(ε) as in Prop.3.1. Find C7 =C7(ε) > 1 such that

C−1
7 ‖v‖ ≤ ∥∥at1 .v

∥∥≤C7 ‖v‖ , ∀v ∈t∧i R4.

Fix a strictly convex function κ> 0 on [0,4]. And find C8 > 1 such that

κ j ≥
κ j−i +κ j+i

2
+C−1

8 ; κ0 = κ4 = 1

for all j ∈ {1,2,3} and j ± i ∈ {0,1,2,3,4}.
Choose c0 ∈ (0,1) small enough, depending on ε,

c
2C−1

8
0 ≤C 2

7 c
2C−1

8
0 ≤ (εC−1

7 )100.

Define

(56) htnew
δ (Λ) = ∑

i=1,2,3
cκi

0 (sys(i )(Λ))−1−δ.

3.2. The proof. For each l = 1,2,3 find ∆(l )
1 ∈ Priml (Λ) such that sys(l )(Λ) =

∥∥∥∆(l )
1

∥∥∥.

3.2.1. Good indices. We define Good(Λ) ⊂ {1,2,3} by

(57) l ∈ Good(Λ) ⇐⇒ ∀∆ ∈ Priml (Λ) \∆(l )
1 , C 2

7 ‖∆‖−1 < sys(l )(Λ)−1.

Thus for l ∈ Good(Λ), ∆ ∈ Priml (Λ) \∆(l )
1 and k ∈ K ,

(58)

∥∥at1 k.∆
∥∥−1−δ ≤C 1+δ

7 ‖∆‖−1−δ <C−1−δ
7 sys(l )(Λ)−1−δ =C−1−δ

7

∥∥∥∆(l )
1

∥∥∥−1−δ ≤
∥∥∥at1 k.∆(l )

1

∥∥∥−1−δ

=⇒ ∀k ∈ K , sys(l )(at1 k.Λ)−1−δ =
∥∥∥at1 k.∆(l )

1

∥∥∥−1−δ
.

This implies that

(59)

∫
cκl

0 sys(l )(at1 k.Λ)
−1−δ

m̂K (k) =
∫

cκl
0

∥∥∥at1 k.∆(l )
1

∥∥∥−1−δ
m̂K (k)

≤ εcκl
0

∥∥∥at1 k.∆(l )
1

∥∥∥−1−δ

= ε · cκl
0 sys(l )(at1 k.Λ)−1−δ.

3.2.2. Bad indices. Bad(Λ) := {1,2,3} \ Good(Λ). In other words, we can find ∆(l )
2 ∈ Priml (Λ) \∆(l )

1 such that

C 2
7

∥∥∥∆(l )
2

∥∥∥−1 ≥ sys(l )(at1 k.Λ)−1.

Recall the following inequalities ∥∥∥∆(l )
1

∥∥∥ ·∥∥∥∆(l )
2

∥∥∥≥
∥∥∥∆(l )

1 ∩∆(l )
2

∥∥∥ ·∥∥∥∆(l )
1 +∆(l )

2

∥∥∥ ,

from which we deduce that (let a := rank∆(l )
1 − rank∆(l )

1 ∩∆(l )
2 )

c2κl
0

∥∥∥∆(l )
2

∥∥∥−1−δ∥∥∥∆(l )
2

∥∥∥−1−δ ≤
(
cκl−a

0

∥∥∥∆(l )
1 ∩∆(l )

2

∥∥∥−1−δ) ·(cκl+a
0

∥∥∥∆(l )
1 +∆(l )

2

∥∥∥−1−δ) · c2κl−κl−a−κl+a
0 .

For the LHS we have

C−4
7

(
cκl

0 sys(l )(Λ)−1−δ
)2 ≤C−2(1+δ)

7

(
cκl

0 sys(l )(Λ)−1−δ
)2 ≤ LHS

and for the RHS,

RHS ≤
(
cκl−a

0 sys(l−a)(Λ)−1−δ
)
·
(
cκl+a

0 sys(l+a)(Λ)−1−δ
)
· c

C−1
8

0 .

Since c
C−1

8
0 ≤ ε50C−50

7 , by combining the above equations we get(
cκl

0 sys(l )(Λ)−1−δ
)2 ≤ ε50C−46

7

(
cκl−a

0 sys(l−a)(Λ)−1−δ
)
·
(
cκl+a

0 sys(l+a)(Λ)−1−δ
)

.

Thus

cκl
0 sys(l )(Λ)−1−δ ≤ ε20C−23

7 max
l ′=0,...,4

{
c
κl ′
0 sys(l ′)(Λ)−1−δ

}
.

Now we choose l1 = l1(Λ,δ) such that the maximum of RHS is achieved. Then l1 ∈ Good(Λ)∪ {0,4}. Also take l0 ∈ Bad(Λ). Then for
every k ∈ K ,

c
κl0
0 sys(l0)(at1 k.Λ)−1−δ ≤C 1+δ

7 c
κl0
0 sys(l0)(Λ)−1−δ ≤ ε20C−20

7 c
κl1
0 sys(l1)(Λ)−1−δ

≤ε20C−18
7 c

κl1
0 sys(l1)(at1 k.Λ)−1−δ.



84 14. QUANTITATIVE OPPENHEIM II, HEIGHT FUNCTION AND NONDIVERGENCE

3.2.3. Wrap-up. To save notation define
αl (Λ) :=cκl

0 sys(l )(Λ)−1−δ.

π∗(αl )(Λ) :=
∫
αl (at1 k.Λ)m̂K (k).

So for l ∈ Good(Λ), we have
π∗(αl )(Λ) ≤ εαl (Λ).

For l ∈ Bad(Λ), we have (l1 = l1(Λ) as above)
π∗(αl )(Λ) ≤ ε20C−18

7 π∗(αl )(Λ).

There are two cases.
Case I, l1 ∈ {0,n}. In this case, for all l , αl (Λ) ≤ max{cκ0

0 ,cκn
0 } = c0. Thus htnew

δ (Λ) ≤ 3c0. And

π∗(htnew
δ )(Λ) ≤ 3c0C 2

7 .

Case II, l1 ∈ Good(Λ).
π∗(htnew

δ )(Λ) =∑
π∗(αl )(Λ)

≤ ε ∑
l∈Good(Λ)

αl (Λ)+ε20C−18
7 π∗(αl1 )(Λ)

≤ ε ∑
l∈Good(Λ)

αl (Λ)+ε21C−18
7 αl1 (Λ)

≤ 2ε
∑

l∈Good(Λ)
αl (Λ) ≤ 2εhtnew

δ (Λ).

In either case, the following holds

(60) π∗(htnew
δ )(Λ) ≤ 3c0C 2

7 +2εhtnew
δ (Λ)

for allΛ ∈ X4. Recall c0 and C7 are only dependent on ε.

4. Exercises
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