
LECTURE NOTES ON NUMBER THEORY

RUNLIN ZHANG

Abstract. This is a course note wrote for a course taught in 2025 spring. It mainly
follows Cox’s book, Primes of the form x2 + ny2, chapter 1 to 6. We used Ireland–

Rosen’s GTM 84 book for the proof of reciprocity laws and Marcus’ Number Fields
for basics on Galois theory and number fields.
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1. Sum of two squares

Fermat considered the following question:

Question 1.1. Which prime number can be represented as x2 + y2 for some x, y ∈ Z?

By explicit calculation:

2 = 12+12, 3 ̸= x2+y2, 5 = 12+22, 7 ̸= x2+y2, 11 ̸= x2+y2, 13 = 22+32, . . .

1.1. Congruence conditions.

Definition 1.2. For an integer N , two integers a, b are said to be congruent modulo N
iff N | (a − b), written as a ≡ b (mod N). Equivalently, their images under the modulo
N operation coincide.

Notation 1.3. The set of modulo N equivalence classes is denoted by Z/NZ. The natural
addition and multiplication make sense in this quotient spaces, making Z/NZ into a
(commutative unital) ring. For an integer x ∈ Z, we let [x]N be its image in Z/NZ. If
such an N is understood from the context, we shall drop the subscript and simply write
[x].

Here is a necessary congruence condition for p being a sum of squares:

Lemma 1.4. Let p be an odd prime with p = x2 + y2 for some x, y ∈ Z. Then p ≡ 1
(mod 4).

Proof. Since p is odd, one of x, y is even and the other is odd. Say x = 2m, y = 2n+ 1.
Then:

p = 4m2 + 4n2 + 4n+ 1 =⇒ p ≡ 1 (mod 4).

□

Fermat claimed that he could prove the converse whereas Euler did write down a proof.

Theorem 1.5. Let p be an odd prime. Then the following are equivalent:

(1) p = x2 + y2 for some x, y ∈ Z.
(2) p | x2 + y2 for some x, y ∈ Z with gcd(x, y) = 1.
(3) p ≡ 1 (mod 4).

So we know 1 =⇒ 3. It remain to show 3 =⇒ 2 =⇒ 1.

1.2. Proof of 3 =⇒ 2. We will use the following lemma (to be proved later).

Lemma 1.6. Let p be an odd prime, then (Z/pZ)× is a cyclic group.

From the lemma, it follows that

Corollary 1.7. Assume p = 4k + 1 for some k ∈ Z is a prime. There exists x ∈ Z
coprime to p such that

x2k − 1 ̸≡ 0 (mod p).

Proof of 3 =⇒ 2. Write p = 4k + 1 for some k ∈ Z.
Since (Z/pZ)× has order p− 1 = 4k, we have

x4k ≡ 1 (mod p)

for all integers x that are coprime to p. Hence,

(x2k − 1)(x2k + 1) ≡ 0 (mod p).
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Now take x as in the corollary. Then,

x2k + 1 ≡ 0 (mod p), i.e., p | (xk)2 + 12.

□

1.3. Proof of 2 =⇒ 1. Let p be an odd prime number, we show by induction that

p | (x2 + y2), ∃x, y ∈ Z, gcd(x, y) = 1 =⇒ p = x′2 + y′2, ∃x′, y′ ∈ Z.

Replacing x by x+ nxp, y by y + nyp, for suitable nx, ny ∈ Z, we assume

|x| ≤ p

2
, |y| ≤ p

2
.

So

x2 + y2 ≤ p2

2
. (1)

Let

x2 + y2 = pd11 p
d2
2 · · · p

dk
k

be the factorization into primes, with p1 > p2 > p3 > · · · . We have p1 = p, d1 = 1 by
Equa.(1). If k = 1, then we are done.

Otherwise, we have p2 | (x2+y2), gcd(x, y) = 1. By induction hypothesis, p2 = a2+ b2

for some a, b ∈ Z. It only remains to show the following:

Lemma 1.8. Let q be a prime number that can be written as a sum of squares:

q = a2 + b2, a, b ∈ Z.

Assume that q divides x2 + y2 for some x, y ∈ Z. Then there exist c, d ∈ Z such that

x2 + y2 = (a2 + b2)(c2 + d2).

Proof. Let i be a solution to x2 + 1 = 0. Then the desired conclusion suggests:

x+ iy = (a+ ib)(c+ id) or x+ iy = (a− ib)(c+ id).

So we are led to compute:

x+ iy

a+ ib
=

(x+ iy)(a− ib)
a2 + b2

=
(ax+ by) + i(ay − bx)

q
,

x+ iy

a− ib
=

(x+ iy)(a+ ib)

a2 + b2
=

(ax− by) + i(ay + bx)

q
.

Since

(ax+ by)(ax− by) = a2x2 − b2y2 = a2x2 + (a2 − q)y2 ≡ a2(x2 + y2)− qy2 ≡ 0 (mod q),

one of q | (ax+ by) and q | ax− by must be true. WLOG, assume the former holds. Then

(ay − bx)2 ≡ (ay − bx)2 + (ax+ by)2 = a2(x2 + y2) + b2(x2 + y2) ≡ 0 (mod q).

So

x+ iy = (a+ ib)(c+ id) with c =
ax+ by

q
, d =

ay − bx
q

∈ Z.

Calculating (x+ iy)(x− iy) proves the lemma. □

1.4. Proof of Lemma 1.6. Let us state it again in a somewhat different form:

Lemma 1.9. Let Fq be a finite field consisting of q elements. Then F×
q is a cyclic group

of order q − 1.

Lemma 1.10. Let A be a finite abelian group. If A is not cyclic, then there exists a
positive integer n | #A but n ̸= #A such that an = 1 for all a ∈ A.

Proof of Lemma 1.9 assuming Lemma 1.10. If F×
q were not cyclic, we would find m |

(q − 1), m ̸= q − 1 such that

xm = 1 ∀x ∈ F×
q .

On the other hand, a polynomial of degree m can have at most m distinct roots in any
field. So

#{x ∈ F×
q : xm = 1} ≤ m < q − 1.

This contradicts against the fact that F×
q has exactly q− 1 elements. Therefore, F×

q must
be cyclic.

□
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1.5. Fundamental theorem of finite abelian groups. Lemma 1.10 is a direct corol-
lary of the following

Theorem 1.11. A finite abelian group A is isomorphic to a direct sum of cyclic groups
A ∼= C1 × ... × Ck. Furthermore, one can choose Ci’s such that #Ci+1

∣∣#Ci for i =
1, ..., k − 1.

We record some lemmas to be used in the proof.

Lemma 1.12. For two coprime integers M,N , the natural map Z/MNZ → Z/MZ ×
Z/NZ is an isomorphism.

This is sometimes known as the Chinese remainder theorem (CRT).

Proof. Using Euclidean algorithm, we find α, β ∈ Z such that αM + βN = 1.
Now assume [x]MN is sent to [0]M and [0]N . That is, x is divisible by M and N . Then

x = xMα+ xβN is divisible by MN , or [x]MN = 0. This proves the injectivity.
Since |Z/MNZ| = MN = |Z/MZ× Z/NZ|, surjectivity follows from injectivity (al-

ternatively, one can construct an inverse more explicitly). □

Definition 1.13. If G is a group and g ∈ G, we let the order of g be ord(g) :=
min {n ∈ Z+ | gn = 1} if such an n exists, otherwise let ord(g) := +∞. We let ⟨g⟩ be the
subgroup generated by g. Thus, ord(g) is the size of ⟨g⟩.

Lemma 1.14. Let G be a finite group and g ∈ G. Let n be a positive integer. Then

(1) ord(g)
∣∣#G;

(2) ord(gn) =
ord(g)

gcd(n, ord(g))
.

Proof. The first follows from the fact that if H ≤ G is a subgroup, then #H
∣∣#G.

For (2) there are two special cases. One is when n is coprime to ord(g) and another is
when n divides ord(g). The general case is a combination of these two.

Let m := ord(g) and m′ := m/ gcd(m,n), n′ := n/ gcd(m,n). So gcd(n′,m) = 1.

We claim that ord(gn
′
) = ord(g), that is, gn

′
also generates ⟨g⟩. Indeed, by Euclidean

algorithm, we find α, β ∈ Z such that αn′ + βm = 1. Then

g = gαn
′+βm = (gn

′
)α

showing that ⟨g⟩ = ⟨gn′⟩ and also ord(gn
′
) = ord(g) = n. Let g1 := gn

′
.

(gn)n
′
= (g

gcd(m,n)
1 )n

′
= gn = 1, which implies ord(gn) | n′.

On the other hand take a positive integer l | m′ such that
(
g
gcd(m,n)
1

)l
= 1. Then

n | l · gcd(m,n) showing that l ≥ n′. In sum, we have ord(g) = n′. □

1.6. Proof of Theorem 1.11. It suffices to show that A is isomorphic to a product of
cyclic groups. Using CRT, one can then arrange that #Ci+1 | #Ci.

Step 1, A is a product of cyclic groups if |A| = pr.

We prove this by induction. So assume that if |A′| = pr
′
with r′ < r and A′ an abelian

group, then A′ is a product of cyclic groups.
Take an a0 ∈ Ap such that ord(a0) attains p

r0 := max{ord(a), a ∈ Ap}. Let π : A →
A/⟨a0⟩ =: B be the quotient homomorphism. By assumption B is a product of cyclic
groups C1 × C2 × ...× Ck. Let xi be a generator of Ci.

We claim that any element x ∈ Ap/⟨a0⟩, say of order ps, can be lifted to ax ∈ A (that
is, ax ∈ π−1(x)) of the same order.

Proof of claim. We choose some arbitrary a1 ∈ π−1(x) first. In general we only know
that ps | ord(a1). We hope to find n such that ps is equal to ord(a1a

n
0 ). Or equivalently

ap
s

1 a
psn
0 = 1. (2)

Setting ax := a1a
n
0 would then complete the claim.

Since π(ap
s

1 ) = xp
s

= 1, we can find t ∈ Z≥0 and l ∈ Z+ coprime to p such that
pt · l ∈ {0, ..., pr0 − 1} and

ap
s

1 = ap
t·l

0

We will search n of the form n′ · l. So we want

ap
t·l

0 ap
sln′

0 = a
l(pt+psn′)
0 = 1. (3)
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A natural choice of n′ would be n′ :=
pr0 − pt

ps
= pr0−s − pt−s. But to ensure n′ is an

integer, we need to show s ≤ r0 and s ≤ t (since t ≤ r0, suffices to prove the latter).
Indeed, by the maximality of ord(a0),

pr0 ≥ ord(a1) = ord(ap
s

1 ) · ps = ord(ap
tl

0 ) · ps = pr0−t+s =⇒ t ≥ s.
This proves the lemma. □

Going back to step one, let a1, ..., ak be the lifts of x1, ..., xk provided by this lemma.
Then, sending xi to ai gives a well-defined injective homomorphism from Ci to A. Let
φ : C1 × ... × Cl × ⟨a0⟩ → A be the product of these homomorphisms. We show φ is an
isomorphism.

Stare at the following commutative diagram

C1 × ...× Cl × ⟨a0⟩ A

C1 × ...× Cl A/⟨a0⟩

φ

π1 π

∼=

where the bottom arrow is an isomorphism and π1 is the natural surjective projection. It
is direct for one to check that φ is indeed surjective and injective.

Step 2, the general case.
Let #A = N = pd11 · p

d2
2 · ... · p

dk
k be the prime decomposition of #A. Let Api := {a ∈

A | ap
di
i = 1}. We claim that A ∼= Ap1 × ...×Apk . T

There is a natural homomorphism φ :
∏
Api → A sending (ai) to a1 · a2 · ... · ak.

(1) φ is injective: If
∏
ai = 1 with ai ∈ Api and cj :=

N

p
dj
j

, then cj is divisible by the

order of ai for all i ̸= j but is coprime to the order of aj . So

1 = (
∏

ai)
cj =

∏
a
cj
i = a

cj
j =⇒ aj = 1.

(2) φ is surjective: Take a ∈ A and assume ord(a) =
∏k
i=1 p

ei
i . Define cj :=

∏
i ̸=j p

ei
i .

Then aj := acj ∈ Apj by definition. Since gcd(c1, . . . , ck) = 1, we can find

(αi)
k
i=1 integers such that

∑
ciαi = 1. Hence a = φ

(
⊕aαj

j

)
, so we have shown

surjectivity.

It remains to observe that #Api = pdi for some d (then it will be forced that d = di).
Indeed, if not, we can find a chain of (normal) cyclic subgroups (Cj)

C1 ≤ A1 := Api , C2 ≤ A2 := A/C1, C3 ≤ A3 := A2/C2, ...., Cl+1 = Al/Cl.

Then #Api =
∏

#Ck. If #Api has some prime factor q ̸= pi then at least one of #Cj
has a prime factor q. By lifting the generator of Cj to Api , one get an element whose
order has a factor q, which is a contradiction.

Now the general case has been reduced to the situation in step one and we are done.

2. Consequence of quadratic reciprocity law

2.1. Legendre symbol and quadratic reciprocity.

Definition 2.1 (Legendre symbol). For a ∈ Z and an odd prime p,(
a

p

)
:=


0 if a ≡ 0 (mod p),

1 if gcd(a, p) = 1, a is a quadratic modulo p,

−1 if gcd(a, p) = 1, a is not a quadratic modulo p.

Lemma 2.2. Let n be a non-zero integer and p be an odd prime that does not divide n.
Then

p | x2 + ny2, ∃ gcd(x, y) = 1 ⇐⇒
(
−n
p

)
= 1.

Proof. =⇒: Since gcd(x, y) = 1, we have y ̸≡ 0 (mod p). Thus

x2 + ny2 ≡ 0 (mod p) =⇒ −n ≡ x2

y2
(mod p) =⇒

(
−n
p

)
= 1.

⇐=: Say −n ≡ x2 (mod p) for some x ∈ Z. Then p | x2+n(1)2. Certainly gcd(x, 1) =
1.

□
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Euler conjectured that the value of

(
−n
p

)
should only depend on the congruence of p

modulo 4n. Here are some explicit statements conjectured by him:(
3

p

)
= 1 ⇐⇒ p ≡ ±1 (mod 12)(

5

p

)
= 1 ⇐⇒ p ≡ ±1,±9 (mod 20)(

7

p

)
= 1 ⇐⇒ p ≡ ±1,±25,±9 (mod 28)(

6

p

)
= 1 ⇐⇒ p ≡ ±1,±5 (mod 24)

His conjecture will be explained from a group theoretic point of view.

Theorem 2.3. Let p and q be two distinct odd primes.

1. (
−1
p

)
= 1 ⇐⇒ p ≡ 1 (mod 4), or

(
−1
p

)
= (−1)

p−1
2 ;

2. (
2

p

)
= 1 ⇐⇒ p ≡ 1, 7 (mod 8), or

(
2

p

)
= (−1)

p2−1
8 ;

3. (1) if q ≡ 1 (mod 4) or p ≡ 1 (mod 4), then(
2

q

)
= 1 ⇐⇒

(
q

p

)
= 1.

(2) If p, q ≡ 3 (mod 4), then(
p

q

)
= 1 ⇐⇒

(
q

p

)
= −1.

In other words, (
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 .

2.2. Basic properties of Jacobi symbol.

Definition 2.4 (Jacobi symbol). Let M ∈ Z and m be an odd positive integer. Let

m =
∏k
i=1 p

ai
i be the prime decomposition of m.(

M

m

)
:=

k∏
i=1

(
M

pi

)ai
;

(
M

1

)
:= 1, M ̸= 0;

(
0

1

)
:= 0.

It follows from the definition that(
M1M2

m

)
=

(
M1

m

)(
M2

m

)
,

That is, M 7→
(
M

m

)
may be viewed as a homomorphism from the (multiplicative)

semigroup Z/mZ→ {0,−1, 1}. Also,(
M

m1m2

)
=

(
M

m1

)(
M

m2

)
.

It is not clear at the moment that whether

(
M

m

)
only depends on m (mod M).

We extend quadratic reciprocity to positive odd numbers.

Lemma 2.5. Let M,m be two positive odd integers. Then

1.

(
−1
m

)
= (−1)m−1

2 ;

2.

(
2

m

)
= (−1)m2−1

8 ;

3.

(
M

m

)
=
(m
M

)
(−1)

(M−1)(m−1)
4 .

Remark 2.6.
(−1
m

)
= 1 does not mean −1 is a square modulo m.
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Assume their prime decompositions are M =
∏r
i=1 q

bj
j and m =

∏l
i=1 p

ai
i .

Proof of 1. By definition and Theorem 2.3,(
−1
m

)
=
∏(

−1
pi

)ai
=
∏(

(−1)
pi−1

2

)ai
= (−1)

∑
ai·

pi−1

2 = (−1)
∏

p
ai
i

−1

2 = (−1)
m−1

2 .

The last two equalities come from the fact that for two odd integers x, y we have

x− 1

2
+
y − 1

2
≡ xy − 1

2
(mod 2).

And we are done.
□

Proof of 2. This is the same as above except one needs

x2 − 1

8
+
y2 − 1

8
≡ x2y2 − 1

8
(mod 2)

for two odd integers x, y. □

Proof of 3. The proof is also similar:(
M

m

)
=
∏
i,j

(
qj
pi

)bjai
=
(m
M

)
(−1)(

∑
ai

pi−1

2 )·
(∑

bj
qj−1

2

)
=
(m
M

)
(−1)

m−1
2 ·M−1

2 .

□

Lemma 2.7. Let m,n be two positive odd integers. Let D be an integer satisfying D ≡ 0, 1

(mod 4). Assume m ≡ n (mod D), then

(
D

m

)
=

(
D

n

)
.

Proof. If D > 0 and D ≡ 1 (mod 4), then by Lemma 2.5,(
D

m

)
=
(m
D

)
=
( n
D

)
=

(
D

n

)
.

If D < 0 and D ≡ 1 (mod 4), then −D ≡ 3 (mod 4). Thus(
D

n

)
= (−1)

n−1
2

(
−D
n

)
= (−1)

n−1
2

(
n

−D

)
(−1)

n−1
2 =

(
n

−D

)
=

(
m

−D

)
=

(
D

m

)
.

Now assume D ≡ 0 (mod 4) and we write D = 4rd for some positive integer r and
some integer d not divisible by 4. In this case m is congruent to n modulo 4. Thus(
−1
m

)
=

(
−1
n

)
. Therefore the case when D < 0 follows from the case when D > 0. So

from now on assume D > 0.
If d is even, then d = 2d′ for some odd number d′. And m ≡ n (mod 8), implying that(
2

m

)
=

(
2

n

)
. Since m ≡ n (mod d′), we have already proved

(
d′

m

)
=

(
d′

n

)
. Now(

D

m

)
=

(
2

m

)
·
(
d′

m

)
=

(
2

n

)
·
(
d′

n

)
=

(
D

n

)
.

The last case is when d is odd. The proof in this case is even simpler than the last
paragraph and is omitted.

□

2.3. The associated character.

Theorem 2.8. Given a nonzero integer D satisfying D ≡ 0, 1 (mod 4), there exists a
unique homomorphism

χD : (Z/DZ)× → {±1}
such that

χD([p]) =

(
D

p

)
for every odd prime p not dividing D.

Moreover,

χD([−1]) =

{
1 D > 0

−1 D < 0
.
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Proof. For x ∈ (Z/DZ)×, choose mx ∈ Z such that [mx] = x and mx is positive and odd.

Define χD(x) :=

(
D

mx

)
. It follows from Lemma 2.7 that this is independent from the

choice of mx.
For x, y ∈ (Z/DZ)×, mxmy ≡ mxy (mod D). Thus

χD(xy) =

(
D

mxy

)
=

(
D

mxmy

)
= χD(x)χD(y).

So it only remains to calculate χD([−1]), which is a case-by-case analysis.
Case 1.1, D > 0, odd.

χD([−1]) =
(

D

2D − 1

)
=

(
2D − 1

D

)
=

(
−1
D

)
= (−1)

D−1
2 = 1.

Case 1.2, D > 0, even. Write D = 4rd and 4 ∤ d. Note that D − 1 ≡ 3 (mod 4). If d is

even, write d = 2d′. In this case D − 1 ≡ −1 (mod 8), so

(
2

D − 1

)
= 1.

χD([−1]) =
(

D

D − 1

)
=

(
d′

D − 1

)
=

(
D − 1

d′

)
(−1)

d′−1
2 =

(
−1
d′

)
(−1)

d′−1
2 = 1.

The case when d is odd is easier.
Case 2.1, D < 0, odd. Note that −2D − 1 ≡ 1 (mod 4).

χD([−1]) =
(

D

−1− 2D

)
=

(
−1− 2D

−D

)
=

(
−1
−D

)
= −1.

Case 2.2, D < 0, even. We only treat the case when D = −4r · 2 · d′ for some positive odd
d′. Here −1−D ≡ −1 (mod 8).

χD([−1]) =
(

D

−1−D

)
=

(
d′

−1−D

)(
−1

−1−D

)(
2

−1−D

)
=

(
−1−D
d′

)
(−1)

d′−1
2 (−1) = −1.

□

3. Quadratic reciprocity law

In this lecture we are going to prove the quadratic reciprocity law:

Theorem 3.1. Let p and q be two distinct odd primes.

1. (
−1
p

)
= 1 ⇐⇒ p ≡ 1 (mod 4), or

(
−1
p

)
= (−1)

p−1
2 ;

2. (
2

p

)
= 1 ⇐⇒ p ≡ 1, 7 (mod 8), or

(
2

p

)
= (−1)

p2−1
8 ;

3. (1) if q ≡ 1 (mod 4) or p ≡ 1 (mod 4), then(
q

p

)
= 1 ⇐⇒

(
p

q

)
= 1.

(2) If p ≡ 3 (mod 4), then(
q

p

)
= 1 ⇐⇒

(
p

q

)
= −1.

In other words, (
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 .

Recall that (Z/pZ)× is a cyclic group of order p − 1. Therefore, an integer n not

divisible by p is a square modulo p iff n
p−1
2 ≡ 1 (mod p). Thus,(

−1
p

)
≡ (−1)

p−1
2 ,

(
2

p

)
≡ 2

p−1
2 ,

(
q

p

)
≡ q

p−1
2 (mod p)

It is direct to see that

(−1)
p−1
2 =

{
−1 if p ≡ 3 (mod 4)

1 if p ≡ 1 (mod 4)
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This proves 1.

3.1. Proof of 2. For an integer n, let ζn := e
2πi
n . A direct calculation confirms that

Lemma 3.2. (ζ8 + ζ−1
8 )2 = 2.

Lemma 3.3. Let Z[ζn] be the subring of C generated by Z and ζn. Then Z[ζn] ∩Q = Z.

The proof of this Lemma will be delayed to a later subsection. Let A be a subset of Q,
two rational numbers x, y are said to be congruent modulo A, written as x ≡ y (mod A)
iff x− y ∈ A. As a corollary, we have

Corollary 3.4. Let p, n be two integers. Then pZ[ζn] ∩Q = Z.p. Consequently, for two
rational numbers x, y, we have the following equivalence

x ≡ y (mod p) ⇐⇒ x ≡ y (mod pZ[ζn])

Proof. It is direct to see that pZ[ζn]∩Q ⊃ Z.p. Conversely, suppose x ∈ pZ[ζn]∩Q, then
x/p ∈ Z[ζn] ∩Q = Z by the above Lemma. Thus x ∈ Z.p.

Once this is done, that x− y ∈ Z.p ⇐⇒ x− y ∈ pZ[ζn] follows. □

By Lemma 3.2,

2
p−1
2 · (ζ8 + ζ−1

8 ) = (ζ8 + ζ−1
8 )p ≡ ζp8 + ζ−p8 (mod pZ[ζ8]) (4)

A direct computation shows that p ≡ ±1 (mod 8) iff (−1)
p2−1

8 = 1. First assume

that p ≡ 1 (mod 8) and we need to show 2
p−1
2 ≡ 1 (mod p). From Equa.(4) and the

assumption we have

2
p−1
2 (ζ8 + ζ−1

8 ) ≡ ζ8 + ζ−1
8 (mod pZ[ζ8])

=⇒ (2
p−1
2 − 1)(ζ8 + ζ−1

8 ) ≡ 0 (mod pZ[ζ8])

=⇒ (2
p−1
2 − 1)(ζ8 + ζ−1

8 )2 = (2
p−1
2 − 1) · 2 ≡ 0 (mod pZ[ζ8])

(Coro 3.4) =⇒ (2
p−1
2 − 1) · 2 ≡ 0 (mod p).

(gcd(2, p) = 1) =⇒ 2
p−1
2 − 1 ≡ 0 (mod p)

In the other case when p ≡ ±3 (mod 8), we have ζ38 + ζ−3
8 = −(ζ8 + ζ−1

8 ). Similar

arguments as above then imply that 2
p−1
2 ≡ −1 (mod p). This completes the proof of

part 2.

3.2. Motivational Examples for Part 3. To motivate the proof of part 3, let us work
out a few examples first.

3.2.1. q=3. Take q = 3 first. One observes that (ζ12+ζ
−1
12 )2 = 3 (one can also use ζ3−ζ−1

3

to get a square root of −3). Repeating the proof from last section one obtains(
3

p

)
= 1 ⇐⇒ p ≡ ±1 (mod 12).

3.2.2. q=5. The case when q = 5 is slightly harder since (ζ5± ζ−1
5 ) no longer works. But

if one believes that
√
5 is expressible as a Q-linear combinations of ζ5, ζ

2
5 , ζ

3
5 , ζ

4
5 . Then

Galois theory (which did not exist at the time of Euler/Legendre/Gauss!) would lead one

to guess
√
5 is related to ζ5 − ζ25 − ζ35 + ζ45 . Indeed, this guess can be confirmed:

(ζ5 − ζ25 − ζ35 + ζ45 )
2

= ζ25 + ζ45 + ζ5 + ζ35 − 2ζ35 − 2ζ45 + 2 + 2− 2ζ5 − 2ζ25

= − (ζ5 + ζ25 + ζ35 + ζ45 ) + 4

=5

Now we can again repeat the argument before to conclude that(
5

p

)
= 1 ⇐⇒ p ≡ ±1 (mod 5).

which is equivalent to p ≡ ±1,±9 (mod 20) as in Euler’s conjecture.
This case is still relatively easy since one probably knows that ζ5 can be expressed as

square root of square root of 5. Nevertheless, one may still observe that the coefficients
of ζa5 is the same as

(
a
5

)
. This is not a coincidence.



11

3.3. Proof of 3. Define gq :=
∑
a∈Z/qZ

(
a

q

)
ζaq

Lemma 3.5. Let q be a positive odd prime number, then g2q =

(
−1
q

)
· q.

Proof. We start with a series of change of variables

g2q =

 ∑
a∈(Z/qZ)×

(
a

q

)
ζaq

2

=
∑

a,b∈Z/qZ

(
ab

q

)
ζa+bq

=
∑

t∈(Z/qZ)×

∑
a∈Z/qZ

(
a(t− a)

q

)
ζtq +

∑
a∈Z/qZ

(
−a2

q

)

=
∑

t∈(Z/qZ)×
ζtq

∑
a∈(Z/qZ)×

(
a(t− a)a−2

q

)
+

(
−1
q

)
(q − 1)

=
∑

t∈(Z/qZ)×
ζtq

∑
a∈(Z/qZ)×

(
ta−1 − 1

q

)
+

(
−1
q

)
(q − 1)

=
∑

t∈(Z/qZ)×
ζtq

∑
a∈(Z/qZ)×

(
b− 1

q

)
+

(
−1
q

)
(q − 1)

=
∑

t∈(Z/qZ)×
ζtq(−1)

(
−1
q

)
+ (q − 1)

(
−1
q

)
= q

(
−1
q

)
.

□

Once this lemma is verified, the remaining proof is similar as before((
−1
q

)
q

) p−1
2

·
(∑(

a

p

)
ζaq

)
=

(∑(
a

p

)
ζaq

)p
≡
∑(

a

p

)
ζapq ≡

(
p

q

)
·
∑(

a

p

)
ζaq (mod p)

=⇒ (−1)
q−1
2

p−1
2 q

p−1
2 ≡

(
p

q

)
(mod p)

This completes the proof.

3.4. Proof of Lemma 3.3. We need Gauss’ lemma. For a polynomial f(x) = a0x
N +

...+ aN in Z[X], let coeff(f) be the set of non-zero coefficients {ai}.

Lemma 3.6. For g, h ∈ Z[X] with gcd(coeff(g)) = gcd(coeff(h)) = 1, we have gcd(coeff(g·
h)) = 1.

Proof. We write
g(x) = b0x

m + b1x
m−1 + ...+ bm,

h(x) = c0x
l + c1x

l−1 + ...+ cl,

g · h(x) = a0x
n + a1x

n−1 + ...+ an.

By convention ai, bi or ci is set to be 0 if it does not appear.
Now assume the conclusion is false and we seek for a contradiction. Find a prime p

dividing all a′is. Choose k (resp. r) to be the smallest non-negative integer such that

p | b0, b1, ...., bk−1 but p ∤ bk
resp. p | c0, b1, ...., cr−1 but p ∤ cr.

Consider

ak+r = b0ck+r + ...+ bk−1cr+1 + bkcr + bk+1cr−1 + ...+ bk+rc0.

For instance, k = 0, r = 2, we are looking at a2 = b0c2+ b1c1+ b2c0. Then p | bkcr, which
is a contradiction.

□

Now we go back to Lemma 3.3. We are actually going to show that Z[α] ∩ Q = Z
whenever α is an algebraic integer, i.e., there exists a monic f(x) ∈ Z[x] such that
f(α) = 0. Assume deg f is as small as possible.
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(1) We claim that f is the minimal polynomial for α in Q[x] (that is, f(α) = 0,
f ∈ Q[x] is monic and deg f is as small as possible). Otherwise, choose g(x) ∈ Q[x]
monic whose degree is strictly smaller than f and g(α) = 0. Write

f = g · h+ r

for some g, r ∈ Q[x] with deg r ⪇ deg g. So r(α) = 0. By minimality of deg g,
r = 0. Let M1,M2 be the smallest integers such that M1g(x),M2h(x) have
Z-coefficients. Then gcd(coeff(M1g(x)) = gcd(coeff(M2h(x)) = 1. By Gauss’
Lemma,

gcd(coeff(M1g(x)M2h(x)) = gcd(coeff(M1M2f(x)) = 1.

Thus M1M2 = 1, implying g ∈ Z[x] and hence is equal to f .
(2) Let N = deg f . Let W be the Z-module spanned by {1, α, . . . , αN−1}. Using the

fact that f is monic, for all m ∈ Z, αm ∈ W . Thus, W is a ring and is equal to
Z[α].

(3) So any element q ∈ Q ∩ Z[α] can be written as λ0 + λ1α + · · · + λN−1α
N−1 for

some λi ∈ Z, then

φ(x) = λ0 − q + λ1x+ · · ·+ λNx
N−1 annihilates α.

This contradicts against the minimality of f .

4. Reduction theory and the descent step

Let p be an odd prime. We want to know when the implication

p | x2 + ny2, gcd(x, y) = 1 =⇒ p = x2 + ny2

holds and when it is not true, what the obstruction is. We will explain the “obstruction”
by a number h(D): no obstruction iff h(D) = 1. How to overcome this obstruction in
this case will be discussed in the next lecture.

An important conceptual transition here is from considering individual quadratic forms
to considering all/many of them – emphasizing their interconnections.

4.1. Space of quadratic forms, proper equivalence. We start with several defini-
tions.

Definition 4.1. An integral quadratic form Q is a nondegenerate (i.e. is not equal to x2

after some complex-linear change of variables) homogeneous polynomial of degree two in
two variables with Z-coefficients. Explicitly, Q(x, y) = ax2 + bxy + cy2, with a, b, c ∈ Z.
It is said to be primitive iff gcd(a, b, c) = 1. Unless otherwise specified, a quadratic
form is a binary nondegenerate primitive integral quadratic form by default.

Given a quadratic form Q, we let

Rep(Q) := {Q(x, y) | x, y ∈ Z}, Repprim(Q) := {Q(x, y) | x, y ∈ Z, gcd (x, y) = 1}.

Definition 4.2. Two quadratic forms Q and Q′ are said to be properly equivalent if

Q(x, y) = Q′(px+ qy, rx+ sy)

for some p, q, r, s ∈ Z satisfying ps − qr = 1. Sometimes we abbreviate this equivalence
relation as Q ∼ Q′.

Remark 4.3. Observe that Q ∼ Q′ =⇒ Rep(Q) = Rep(Q′), Repprim(Q) = Repprim(Q′).

Notation 4.4. Given γ =

(
p q
r s

)
and a quadratic form Q, let γQ be a new quadratic

form defined by
γQ(x, y) := Q((x, y)γ) = Q(px+ qy, rx+ sy).

Let MQ denotes the symmetric matrix representing Q, i.e.,

Q(x, y) = (x, y)MQ

(
x
y

)
.

Then MγQ = γMQγ
tr.
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4.2. Discriminant friends. Besides Rep(−), there is another invariant with respect to
this relation:

Definition 4.5. The discriminant of a quadratic form Q(x, y) = ax2 + bxy + cy2 is
defined by disc(Q) := b2 − 4ac.

Lemma 4.6. If Q ∼ Q′, then disc(Q) = disc(Q′).

Proof. Note that MQ =

(
a b

2
b
2 c

)
and hence disc(Q) = −4 det(MQ). If Q ∼ Q′, then we

find γ ∈ SL(2,Z) such that Q = γQ′. So MQ′ = γMQγ
tr. Hence

det(MQ′) = det(MQ), implying disc(Q′) = disc(Q).

□

Notation 4.7. We denote byMD the space of quadratic forms of discriminant D. When
D < 0, we letM+

D ⊂MD collect positive definite forms. LetMD(R) (resp. M+
D(R)) be

the space of (resp. positive definition) real quadratic forms of discriminant D.

Note that a necessary condition forMD ̸= ∅ is that D ≡ 0, 1 (mod 4).

Lemma 4.8. Assume D is an integer with D ≡ 0, 1 (mod 4). ThenMD ̸= ∅. And if m
is an odd number coprime to D, then

D ≡ x2 (mod m) ∃x ∈ Z ⇐⇒ m ∈ Repprim(Q), ∃Q ∈MD.

Since the first half of the statement is implied by the second half, we focus on proving
the latter.

Proof of ⇐=. Find Q(x, y) = ax2 + bxy + cy2 and coprime integers p, q such that m =

Q(p, q). By Bezout theorem, find t, s ∈ Z such that pt− qs = 1. Let MQ =

(
a b/2
b/2 c

)
.

Then we can find integer n, l such that

AMQA
tr =

(
m n

2
n
2 l

)
, where A :=

(
p q
s t

)
.

Taking determinants of both sides:

−D
4

= ml − n2

4
=⇒ D = −4ml + n2 =⇒ D ≡ n2 (mod m).

This finishes the proof. □

Proof of =⇒. We first note that

m = m · 12 + b · 1 · 0 + c · 02 ∀ b, c ∈ Z.
That is, if Qb,c(x, y) = mx2 + bxy + cy2, then m = Qb,c(1, 0) ∈ Repprim(Qb,c). We hope
to find b, c ∈ Z such that

disc(Qb,c) = b2 − 4mc = D (5)

Since D ≡ □ (mod m), there exist s, t ∈ Z such that D = s2 − tm. Thus
D = (s+m)2 − 2sm−m2 − tm = (s+m)2 − (2s+m+ t)m.

We let t′ := 2s+m+ t. Since m is odd, one of t or t′ must be even. WLOG, we assume
t is even.

We then make use of the conditionD ≡ 0, 1 (mod 4). Also note that s2 ≡ 0, 1 (mod 4).
Thus

tm = s2 −D ≡ 0, 1− 0, 1 ≡ −1, 0, 1 (mod 4).

But t is even, so we are forced to have tm ≡ 0 (mod 4). As m is odd, t ≡ 0 (mod 4). So
we can write t = 4r for some r ∈ Z.

Thus b := s, c := r is a solution to Equa.(5) and the proof is complete.
□

We are interested in the quadratic form x2 +ny2, which has discriminant −4n. Apply
the lemma in the case D = −4n and m = p is a prime here.

Corollary 4.9. Let n ∈ Z and p be an odd prime not dividing n, then(
−n
p

)
= 1 ⇐⇒ p ∈ Repprim(Q), ∃Q ∈M−4n.

Note that χ−4n(p) =

(
−4n
p

)
=

(
−n
p

)
.
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4.3. Reduced form. So now we know that

p | x2 + ny2 ⇐⇒
(
−n
p

)
= 1

implies that p is primitively represented by some “discriminant-friend” Q of x2+ny2. On
the other hand, p is also primitively represented by any Q′ ∼ Q. The question is, when
can we find Q′ = x2 + ny2?

Definition 4.10. Assume D < 0. A positive definite quadratic form Q(x, y) = ax2 +
bxy + cy2 of discriminant D is said to be reduced if 0 ≤ b ≤ a ≤ c and if |b| = a or

a = c, then b ≥ 0. We letMred,+
D collect all reduced (positive definite) quadratic forms of

discriminant D.

Theorem 4.11 (Lagrange). Every positive definite quadratic form Q is properly equiva-
lent to a unique reduced form.

4.4. Proof of Existence. Given Q(x, y) = aQx
2 + bQxy + cQy

2, by choosing special
p, q, r, s, we find the following two forms are properly equivalent to Q:

U(Q)(x, y) = Q(x− y, y) = aQx
2 + (bQ − 2aQ)xy + (cQ + aQ − bQ)y2

T (Q)(x, y) = Q(−y, x) = cQx
2 − bQxy + aQy

2.

Also note that Q being positive definite implies that

disc(Q) = b2Q − 4aQcQ < 0, aQ, cQ > 0.

The idea is to apply U and T repeatedly to reduce the size of |bQ|. For convenience,
let us assume that we have already arrived at Q0 such that

(1) Q0 ∼ Q,
(2) |b0| := |bQ0 | is as small as possible.

Applying T if necessary, we further assume that

(3) a0 ≤ c0.
Now, we show that |b0| ≤ a0. Indeed if this were not true, the b-coefficient of U(Q)

or U−1(Q) (which is |b0 − 2a0|, |b0 + 2a0| respectively) would be strictly smaller smaller
than |b0|, a contradiction against (2).

So we have |b0| ≤ a0 ≤ c0. If both inequalities are strict, then we are done.
Next, we consider the case when a0 = c0. If b0 ≥ 0 then we are done. Otherwise

Q1 := T (Q0) would have the required property.
Last, assume |b0| = a0. If b0 ≥ 0 then we are done. If not, Q1 := U−1(Q0) meets our

requirement.

4.5. Proof of Uniqueness. The key to the proof is the following observation (due to
Lagrange):

Lemma 4.12. Let Q(x, y) = ax2+bxy+cy2 is a reduced positive definite quadratic form.
Then |Q(x, y)| ≥ c (hence ≥ a) if x, y ̸= 0. Moreover, if Q(x, y) = a, then one of the
following holds:

1. (x, y) = ±(1, 0);
2. (x, y) = ±(0, 1) and a = c;
3. (x, y) = ±(1,−1) and a = b = c, that is, Q(x, y) = x2 + xy + y2.

Proof. The proof is divided into two cases: |x| ≥ |y| or |x| ≤ |y| − 1. In either case we
have Q(x, y) ≥ ax2 + cy2 − |bxy| with equality holds iff xy ≤ 0.

In the 1st case, we have

Q(x, y) ≥ ax2 + cy2 − |bxy|
≥ |x| ||ax| − |by||+ cy2

≥ cy2 ≥ c ≥ a
with equality holds iff

c = a, y2 = 1, a = |b| , |x| = |y| , xy ≤ 0 =⇒ a = b = c, (x, y) = (1,−1), or (−1, 1).
In the 2nd case, we have

Q(x, y) ≥ ax2 + cy2 − |bxy|
≥ ax2 + |y| ||cy| − |bx||
≥ ax2 + c |y| ⪈ c ≥ a.
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Note that equality Q(x, y) = a is impossible to hold in this case. □

Now we start the formal proof. Let Q,Q′ be two reduced (positive definite) quadratic
forms that are properly equivalent and we need to show Q = Q′. We first note that by
the lemma above,

aQ = minRepprim(Q) = minRepprim(Q′) = aQ′ .

By the definition of proper equivalence,

Q(x, y) = Q′ ((x, y).γ) , ∃ γ =

(
p q
r s

)
∈ SL2(Z).

In particular,

a′Q = aQ = Q(1, 0) = (1, 0)MQ

(
1
0

)
= Q′(p, q).

By Lemma 4.12, there are three cases

(a) (p, q) = ±(1, 0)
(b) (p, q) = ±(0, 1) and a′Q = c′Q;

(c) (p, q) = ±(1,−1) and a′Q = b′Q = c′Q = 1.

Case (a). We have

γ = ±
(
1 0
r 1

)
, ∃ r ∈ Z.

Then
Q′(x, y) = aQx

2 + (bQ + 2raQ)xy + cQ′y2

=⇒ aQ ≥ |bQ + 2raQ| ≥ 2 |r| aQ − bQ ≥ (2 |r| − 1)aQ

Therefore r = 0, 1,−1. If r = 0, then Q = Q′ and we are done. Otherwise r = ±1, and
hence all inequalities above become equalities and hence aQ = |bQ| and the signs of bQ
and r are different, implying bQ = aQ ≥ 0 and r = −1. But now Q′ = aQx

2−aQxy+cQy2
is not reduced, a contradiction.

Case (b). Now γ = ±
(
0 −1
1 s

)
and

Q′(x, y) = aQy
2 + bQy(−x+ sy) + cQ(−x+ sy)2

= cQx
2 + (−bQ − 2scQ)xy + (aQ + sbQ + s2cQ)y

2

=⇒ aQ = cQ = a′Q, aQ ≥ |−bQ − 2saQ| ≥ |2s| aQ − |bQ| ≥ (2 |s| − 1)aQ

So s = 0, 1,−1. If s = 0, then the above equation implies b′Q = −bQ hence bQ = b′Q = 0

and Q = Q′ = x2 + y2.
If s = ±1, then all the inequalities above become equalities. So s and bQ have different

signs and aQ = |bQ| =⇒ aQ = bQ. Hence s = −1 and Q′ = Q = x2 + xy + y2.
Case (c). Here we have Q′(x, y) = x2 + xy + y2. So aQ = a′Q = 1 and bQ = 0, 1,−1.
Inserting into b2Q − 4cQ = −3, we get bQ = ±1 and cQ = 1. So Q = x2 + xy + y2 = Q′.

4.6. Finiteness of class number. An immediate consequence of the above theorem
(the existence part) is the finiteness of proper equivalence classes.

Definition 4.13. Given an integer D ≡ 0, 1 (mod 4) and D < 0, we define the form
class number

h(D) :=# {proper equivalence classes of positive definite quadratic forms of discriminant D}

=#M+
D/ SL2(Z) = #Mred,+

D .

Corollary 4.14. Given D ∈ Z<0 and D ≡ 0, 1 (mod 4). Let Q(x, y) = ax2 + bxy + cy2

be a reduced positive definite quadratic form with discriminant D. Then |b| ≤ a ≤
√

−D
4

and c ≤ −D
4a ≤

−D
4 . Consequently h(D) ≤ D2

8 .

Proof. Note that |b| ≤ a ≤ c.

−D = 4ac− b2 =⇒ 4ac ≤ −D =⇒ c ≤ −D
4a
≤ −D

4
, a ≤

√
−D
4
.

□
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4.7. Class number 1 and representation of quadratic forms.

Definition 4.15. Given an integer D ≡ 0, 1 (mod 4), We define the principal quadratic
form (will be abbreviated as the principal form) to be

Qprin
D (x, y) :=

{
x2 − D

4 y
2 if D ≡ 0 (mod 4)

x2 + xy + −D+1
4 y2 if D ≡ 1 (mod 4)

.

The proper equivalence class that Qprin
D belongs to is called the principal class.

Corollary 4.16. Given a negative integer D ≡ 0, 1 (mod 4) such that h(D) = 1. Let p
be an odd prime number coprime to D. Then TFAE

(1) p ∈ ker(χD);

(2) p ∈ Repprim(Qprin
D );

(3) Qprin
D (x, y) ≡ 0 (mod p) for some gcd(x, y) = 1.

In the special case when D = −4n for some n ∈ Z+, we have the following equivalences

(1)

(
−n
p

)
= 1;

(2) p = x2 + ny2 for some x, y ∈ Z;
(3) p | x2 + ny2 for some gcd(x, y) = 1.

4.8. Examples of class numbers. Corollary 4.14 yields an algorithm to calculate class
numbers. Let us do a few examples by hand.

Example 4.17. h(−4) = 1 , Mred,+
D = {x2 + y2}.

Example 4.18. h(−3) = 1 , Mred,+
D = {x2 + xy + y2}.

Example 4.19. h(−12) = 1 , Mred,+
D = {x2 + 3y2}.

Example 4.20. h(−16) = 1 , Mred,+
D = {x2 + 4y2}.

Example 4.21. h(−20) = 2 , Mred,+
D = {x2 + 5y2, 2x2 + 2xy + 3y2}.

Example 4.22. h(−24) = 2 , Mred,+
D = {2x2 + 3y2, x2 + 6y2}.

Example 4.23. h(−28) = 1 , Mred,+
D = {x2 + 7y2}.

As a corollary of this example, one obtains

Theorem 4.24. Let p ̸= 7 be an odd prime, then

p = x2 + 7y2, ∃x, y ∈ Z ⇐⇒ p ≡ 1, 2, 4 (mod 7).

One may wonder whether there are other examples of class number one.

Theorem 4.25 (Gauss conjecture, Landau theorem). If n ∈ Z+, then h(−4n) = 1 iff
n = 1, 2, 3, 4, 7.

See Cox’s book for a short proof.

5. Local Representation and Genus

Notation.

• A quadratic form refers to some Q(x, y) = ax2 + bxy + cy2 with a, b, c ∈ Z and
gcd(a, b, c) = 1.

• [x]N is the image of an integer x in Z/NZ.
Recall

p ≡ 1, 3, 7, 9 (mod 20) ⇐⇒
(
−5
p

)
= 1 ⇐⇒ p = x2 + 5y2 or 2x2 + 2xy + 3y2.

On the other hand, explicit calculation yields

{1, 9 (mod 20)} =
{
m ∈ (Z/20Z)×

∣∣ m ≡ x2 + 5y2 (mod 20)
}

{3, 7 (mod 20)} =
{
m ∈ (Z/20Z)×

∣∣ m ≡ 2x2 + 2xy + 3y2 (mod 20)
}

From here we deduce that

Theorem 5.1. Let p be an odd prime, p ̸= 5. Then

p ≡ 1, 9 (mod 20) ⇐⇒ p = x2 + 5y2

p ≡ 3, 7 (mod 20) ⇐⇒ p = 2x2 + 2xy + 3y2
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Our example suggests that

• the modulo-D-invertible numbers that are represented by x2 + ny2 is a group;
• for different quadratic forms, the set of invertible-modulo-D representations are

either the same or disjoint.

A calculation with D = −56 is also in support of this, indeed,

p ≡ 1, 9, 15, 23, 25, 39 (mod 56) ⇐⇒ p = x2 + 14y2 or 2x2 + 7y2

p ≡ 3, 5, 13, 19, 27, 45 (mod 56) ⇐⇒ p = 3x2 + 2xy + 5y2 or 3x2 − 2xy + 5y2.

5.1. Local representations.

Definition 5.2. Given a quadratic form Q of discriminant D < 0, let Rep(Q,mod) be
the image of Rep(Q) in Z/DZ. An integer m is said to be locally represented by Q if
[m]D ∈ Rep(Q,mod). Let Rep×(Q,mod) := Rep(Q,mod) ∩ (Z/DZ)×. Also, we let

Genus(Q) :=
{
Q′ ∈M+

D

∣∣ Rep×(Q′,mod) = Rep×(Q,mod)
}

denote the genus containing Q. The special genus Genus(Qprin
D ) containing the principal

form is called the principal genus.

Remark 5.3. When a prime number q ∤ D = −4n, every integer is represented by
x2 + ny2 modulo ql for any l ∈ Z+. Also, if an integer is represented by x2 + ny2 modulo
D, then it is also represented by x2 + ny2 modulo higher powers of D. Therefore, for a
quadratic form Q and an integer z, [z]N ∈ Rep(Q,mod) implies that z is represented by
Q modulo all integers M .

Theorem 5.4. Let D ≡ 0, 1 (mod 4) be a negative integer and χD : (Z/DZ)× → {±1}
be the associated character. Then

(1) HD := Rep×(Qprin
D ,mod) is a subgroup of ker(χD).

Let Q be a positive definite quadratic form of discriminant D, then

(2) Rep×(Q,mod) is a coset of HD in ker(χD).

Let p ∤ D be a prime number in ker(χD).

(3) If p is locally represented by Q (i.e. [p]D ∈ Rep×(Q,mod)), then p is globally rep-
resented by some genus-friend of Q (i.e. p ∈ Rep(Q′), for some Q′ ∈ Genus(Q)).

In part (3), it suffices that p is an integer coprime to D that vanishes along χD.

Remark 5.5. Part (2) of the above theorem shows that Q ∼Genus Q′ ⇐⇒ Q′ ∈
Genus(Q) defines an equivalence relation, which coarser than proper equivalence, onM+

D.
Since every congruence class in (Z/DZ)× contains one prime number (by Dirichlet’s
theorem on primes in arithmetic progressions, which we do not prove), the above theorem
establishes a bijection

M+
D/ ∼Genus

∼= ker(χD)/HD.

Since RHS is a group, this suggests a group structure on the left hand side. We will
actually construct a group structure on M+

D/ SL2(Z) in the next section, making [Q] 7→
Rep×(Q,mod) a group homomorphism onto ker(χD)/HD. The principal genus is nothing
but the kernel of this homomorphism.

M+
D/ ∼

M+
D/ ∼Genus ker(χD)/HD∼=

5.2. Representation by principal genus. In the special case of D = −4n, we draw
the following corollary.

Corollary 5.6. Let n ∈ Z+ and p ∤ n be an odd prime number. Then (D := −4n)

p ∈ Rep(Q), ∃Q ∈ Genus(Qprin
D ) ⇐⇒ p ≡ β2 or β2 + n (mod D), ∃β ∈ Z.

Proof of =⇒. Write p ≡ x2 + ny2 (mod D) for some x, y ∈ Z. Since

x2 + ny2 ≡

{
x2 (mod D) if y is even

x2 + n (mod D) if y is odd
,

we are done. □
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Proof of ⇐=. Either case implies that p ∈ Rep(Qprin
D ,mod). It only remains to invoke

Theorem 5.4.
□

From the next subsection on, we start to prove Theorem 5.4 in the special case D ≡ 0
(mod 4). As usual, we write D = −4n.

5.3. Proof of Theorem 5.4, (1). It follows from

(x+ ny2)(z + nw2) = (x+
√
−n y)(x−

√
−n y)(z +

√
−nw)(z −

√
−nw)

=
(
(xz − nyw) +

√
−n (xw + yz)

) (
(xz − nyw)−

√
−n (xw + yz)

)
= (xz − nyw)2 + n(xw + yz)2

that Rep(Qprin
D ) is closed under multiplications. Therefore, HD is a subgroup of (Z/DZ)×.

Next we explain that it is contained in ker(χD).
Fix some element in HD, written as [x2 + ny2]D ∈ (Z/DZ)× for some x, y ∈ Z such

that x2 + ny2 is coprime to D. Let g := gcd(x, y) and write x = gx1, y = gy1 for some
coprime integers x1, y1. Then

χD(x
2 + ny2) = χD(x

2
1 + ny21). (6)

Factorize x21 + ny21 =
∏
prii . Since D is even and x2 + ny2 is coprime to D, we have that

each pi is odd. Thus for each i,

pi | x21 + ny21 =⇒
(
−n
pi

)
= 1 =⇒ χD(pi) = 1.

Hence χD(x
2
1 + ny21) = 1. By Equa.(6), χD(x

2 + ny2) = 1 and the proof is complete.

5.4. Proof of Theorem 5.4, (2). The proof of (2) involves some clever algebra. Write
Q(x, y) = ax2 + bxy + cy2. Note that D ≡ 0 (mod 4) =⇒ b is an even number.

First we prove (2) under the assumption that c is coprime to D. Then we show that in
general it is always possible to find Q′ properly equivalent to Q such that the c-coefficient
of Q′ satisfies this assumption.
Step 1. Assume gcd(c,D) = 1. We fix some c∗ ∈ Z such that cc∗ ≡ 1 (mod D). For
any x, y ∈ Z,

4c ·Q(x, y) = 4acx2 + 4bcxy + 4c2y2 = (4ac− b2)x2 + (b2x2 + 4bcxy + 4c2y2)

= (bx+ 2cy)2 −Dx2

=⇒ c ·Q(x, y) =

(
b

2
x+ cy

)2

+ nx2

=⇒ Q(x, y) ≡ c∗
((

b

2
x+ cy

)2

+ nx2

)
(mod D).

(7)

This shows that Rep×(Q,mod) is contained in the coset c∗HD. The reverse inclusion is
similarly proved. Fix z, w ∈ Z and note that x := w, y := (z − b

2w)c
∗ satisfies

b

2
x+ cy ≡ z (mod D)

x ≡ w (mod D)
.

Hence

z2 + nw2 ≡ cQ(x, y) (mod D).

This shows that HD ⊂ c · Rep×(Q,mod). And thus Rep×(Q,mod) = c∗HD is a coset in
(Z/DZ)×. It only remains to check χD(c) = 1. Since c is positive and odd, we have

χD(c) =

(
D

c

)
=

(
b2 − 4ac

c

)
=

(
b2

c

)
= 1.
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Step 2. It suffices to show (when M := D)

Lemma 5.7. Let M be an integer. There exist x, y ∈ Z such that Q(x, y) is coprime to
M .

Proof. Since gcd(a, b, c) = 1, Q(1, 0) = a, Q(1, 1) = a + b + c and Q(0, 1) = c, for any
prime p, there exists (xp, yp) ∈ {(1, 0), (1, 1), (0, 1)} such that Q(xp, yp) is coprime to p.
Let p1, ..., pr be the distinct prime factors of M . By CRT, find (x, y) ∈ Z2 satisfying

x ≡ xpi (mod pi), y ≡ ypi (mod pi), ∀ i = 1, ..., r.

Then Q(x, y) ≡ Q(xpi , ypi) (mod pi) for each i, implying that Q(x, y) is coprime to each
pi and hence to M .

□

5.5. Proof of Theorem 5.4(3). By Lemma 1.8 from we can find Q′ ∈M+
D representing

p. Thus p ∈ Rep×(Q′,mod). But any two Rep×(•,mod) are either disjoint or the same
by part (2) of the theorem. So we must have Rep×(Q′,mod) = Rep×(Q,mod) and so
Q′ ∈ Genus(Q). The proof is now complete.

6. Composition of quadratic forms

Notation. A quadratic form will be written as ax2 +2bxy+ cy2 for some integers satis-
fying gcd(a, 2b, c) = 1. Also if D = −4n, then n = ac− b2. We often assume n ∈ Z+.

Although much of the theory generalizes without difficulty to D ≡ 1 (mod 4), we have
chosen to focus on the case D ≡ 0 (mod 4), where the b-coefficient is even.

6.1. Lead-in. We start by presenting Lagrange’s argument showing

Theorem 6.1. Let p, q be two prime numbers. Then

(1) p, q ≡ 3, 7 (mod 20) =⇒ pq = x2 + 5y2 for some x, y ∈ Z;
(2) p ≡ 3 (mod 20) =⇒ 2p = x2 + 5y2 for some x, y ∈ Z.

Proof. We have shown that

p, q ≡ 3, 7 (mod 20) =⇒

{
p = 2x2 + 2xy + 3y2

q = 2z2 + 2zw + 3w2

for some x, y, z, w ∈ Z. Also 2 = 2 · 12 + 2 · 1 · 0 + 3 · 02. It only remains to apply the
following identity. □

Lemma 6.2. We have the following identity:

(ax2 + 2bxy + cy2)(az2 + 2bzw + cw2) = (axz + bxw + byz + cyw)
2
+ n(xw − yz)2 (8)

if n = ac− b2.

Proof. Recall that we showed in last lecture (replace ac by n+ b2)

(ax2 + 2bxy + cy2) · cw2 = (bx+ cy)2w2 + nx2w2.

By symmetry

(ax2 + 2bxy + cy2) · az2 = (by + ax)2z2 + ny2z2.

We also have (replace 4b2 by 2b2 + (2ac− 2n))

(ax2 + 2bxy + cy2) · 2bzw =
(
2abx2 + (2ac− 2n+ 2b2)xy + 2cby2

)
· zw

= 2zw · (ax · bx+ ax · cy + bx · by + by · cy) + n · (−2xyzw)
= 2zw · (ax+ by)(bx+ cy) + n · (−2xyzw)

Adding them together completes the proof. □

Inspired by Equa.(8), one is naturally led to define

Definition 6.3. Given two quadratic forms Q1, Q2 ∈ MD, a third quadratic form Q3 ∈
MD is said to be a naive composition of Q1 and Q2 iff there exist two Z-bilinear forms
B1, B2 on Z2 such that

Q1(x, y) ·Q2(z, w) = Q3 (B1((x, y), (z, w)), B2((x, y), (z, w))) .

Explicitly, for some αi, βi, ηi, θi ∈ Z (i = 1, 2),

Q1(x, y) ·Q2(z, w) = Q3 (α1xz + β1xw + η1yz + θ1yw, α2xz + β2xw + η2yz + θ2yw) .
(9)
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Lemma 6.2 above essentially shows that x2 + ny2 is a naive composition of Q with
itself for whatever Q ∈MD.

This notion turns out to be a little too coarse to get a group structure.
Using matrices, RHS of Equa.(9) is rewritten as

Q3

(
(z, w)

((
α1 α2

β1 β2

)
x+

(
η1 η2
θ1 θ2

)
y

))
or Q3

(
(x, y)

((
α1 α2

η1 η2

)
z +

(
β1 β2
θ1 θ2

)
w

))
6.2. Direct composition. With a little more care, we define

Definition 6.4. Notation as in Definition 6.3. We say that Q3 is a direct composition
of Q1, Q2 provided Bi’s can be chosen such that

Q1(1, 0) = det

(
α1 α2

β1 β2

)
, Q2(1, 0) = det

(
α1 α2

η1 η2

)
. (10)

We let Comp+(Q1, Q2) collect all possible direct compositions.

Remark 6.5. The composition in Lemma 6.2 is not a direct composition.

To understand the condition (10), we need

Lemma 6.6. Notation as in Definition 6.3. So we have assumed Q1, Q2, Q3 ∈ MD.
Moreover, assume that D = −4n with n ∈ Z+. For every (x, y) ̸= (0, 0), there exist a
unique sgni(x, y) ∈ {1,−1} (i = 1, 2) such that

Q1(x, y) = sgn1(x, y) det

(
α1x+ η1y α2x+ η2y
β1x+ θ1y β2x+ θ2y

)
.

Q2(z, w) = sgn2(z, w) det

(
α1z + β1w α2z + β2w
η1z + θ1w η2z + θ2w

)
.

(11)

Moreover, sgni(x, y) = sgni is independent of the choice of (x, y) ̸= (0, 0).

Proof. Let Mi be the symmetric matrix corresponding to Qi. Fix x, y and view both
sides of Equa.(9) as quadratic forms in z, w. Calculate the discriminant of this quadratic
form. By the left hand side we get

disc = Q1(x, y)
2 · disc(Q2).

From the right hand side we get

RHS = (z, w)

(
α1x+ η1y α2x+ η2y
β1x+ θ1y β2x+ θ2y

)
MQ3

(
α1x+ η1y α2x+ η2y
β1x+ θ1y β2x+ θ2y

)tr(
z
w

)
=⇒ disc = det

(
α1x+ η1y α2x+ η2y
β1x+ θ1y β2x+ θ2y

)2

· disc(Q3)

(12)
This proves the first half of Equa.(11) and the second half follows from a similar argument.

To show that sgni(x, y) is independence of (x, y), it suffices to note that (x, y) 7→
sgni(x, y) is a continuous map from R2 \ {(0, 0)} to {−1, 1}: the domain being connected
forces the image to be connected. □

Lemma 6.7. Direct compositions are SL2(Z)-stable. More precisely,

(1) If Q3 ∈ Comp+(Q1, Q2) and Q
′
3 ∼ Q3 then Q′

3 ∈ Comp+(Q1, Q2);
(2) If Q′

1 ∼ Q1, Q
′
2 ∼ Q2, then Comp+(Q′

1, Q
′
2) = Comp+(Q1, Q2).

Proof of (1). Thanks to Equa.(12), if Q′
3 = γQ3, then Equa.(9) holds for Q3 replaced by

Q′
3 and (B1, B2) replaced by

(B′
1((x, y), (z, w)), B

′
2((x, y), (z, w))) = (z, w)

(
α1x+ η1y α2x+ η2y
β1x+ θ1y β2x+ θ2y

)
· γ−1

One can verify that B′
1, B

′
2 are still bilinear and the signature stays positive. □

Proof of (2). Say Q′
i =

γiQi (i = 1, 2) for some γi ∈ SL2(Z). And Q3 satisfies Equa.(9)
with the correct signature.

One simply replace Bi by

B′
1((x, y), (z, w)) := B1((x, y)γ1, (z, w)γ2), B′

2((x, y), (z, w)) := B2((x, y)γ1, (z, w)γ2).

□
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At this stage, it is not clear how many elements Comp+ / ∼ consists of. Gauss managed
to show that there is only one element in Comp+ / ∼, using which he defines a group
structure. We will take a different route, following Dirichlet. Gauss’ result will be deduced
as Corollary 6.23 in the end.

6.3. An extension of Lemma 6.2 and explicit composition. Here we present an
even more concrete composition. Many proofs will ultimately rely on such a concrete
representation.

Lemma 6.8. When the middle coefficients coincide, we have the following identity:

(ax2 + 2bxy + cy2)(dz2 + 2bzw + fw2) = adX2 + 2bXY +
f

a
Y 2 if ac = df

where X := xz − f
ayw and Y := axw + dyz + 2byw.

In light of this lemma, we make the following definition.

Definition 6.9. A pair (Q1, Q2) of quadratic forms is said to be Lagrange-great iff
it is Lagrange-good and both forms have the same b-coefficients. In this case, a | f and

Q3 := Q1 ⋆bQ2 is nothing but Q3 = adx2 +2bxy+
f

a
y2 as in the Lemma 6.8. We simply

write as Q1 ⋆ Q2 and refer to it as the explicit (Lagrange) composition of (Q1, Q2).

Remark 6.10. By Lemma 6.8,

Q1 ⋆ Q2

(
xz + 0xw + 0yz − f

a
yw, 0xz + axw + dyz + byw

)
= Q′

1(x, y) ·Q′
2(z, w).

which shows that Q3 is a naive composition since a | f . Since

a = Q′
1(1, 0) = det

(
1 0
0 a

)
, d = Q′

2(1, 0) = det

(
1 0
0 d

)
the explicit Lagrange composition is actually a direct composition.

6.4. Proof of Lemma 6.8. Now we turn to the proof of Lemma 6.81. Whereas one could
simply multiply out and compare both sides, we give a hopefully more motivated proof.
Since one might imagine that x2 + ny2 would be the identity element, it is reasonable to
expect something like the following should hold

Lemma 6.11.

(x2+ny2)(dz2+2bzw+fw2) = d(xz−fyw−byz)2+2b(xz−...)(xw+...)+f(xw+dyz+byw)2.

Proof. We first note that

(x2 + dfy2)(dz2 + fw2) = dx2z2 + fx2w2 + fd2y2z2 + df2y2w2

= d(x2z2 + f2y2w2) + f(x2w2 + d2y2z2)

= d(xz − fyw)2 + f(xw + dyz)2
(13)

Note that x2 + ny2 = x2 + dfy2 − b2y2. It seems reasonable to guess that by inserting
certain A,D to be determined, we would have

(x2 + dfy2−b2y2) · (dz2 + fw2+2bzw)

= d(xz − fyw + bA)2 + 2b(xz − fyw + bA)(xw + dyz + bD) + f(xw + dyz + bD)2

By Equa.(13), this would follow from

−b2y2(dz2 + fw2) + 2bzw(x2 + dfy2)−2b3y2zw
= 2dbA(xz − fyw) + db2A2 + 2b2(Axw + dAyz) + 2b2(Dxz − fDyw)

+ 2b(xz − fyw)(xw + dyz) + 2b3AD + 2fbD(xw + dyz) + fb2D2

(14)

We collect terms according to powers of b and

2b3 : −y2zw =?AD

b2 : −dy2z2 − fy2w2 =?dA2 + 2Axw + 2dAyz + 2Dxz − 2fDyw + fD2

2b : x2zw + dfy2zw =?dAxz − dfAyw + fDxw + fdDyz + x2zw + dxyz2 − fxyw2 − fdy2wz

1In the class we presented a more direct proof...



22

This suggests us to set A := −yz and D := yw. One can check that

−y2zw = (−yz)(yw) = AD

−dy2z2 − fy2w2 = dy2z2 − 2yzxw − 2dy2z2 + 2ywzx− 2fy2w2 + fy2w2

= dA2 + 2Axw + 2dAyz + 2Dzx− 2fDyw + fD2

x2zw + dfy2zw = −dxyz2 + dfy2zw + fxyw2 + fdy2wz + x2zw + dxyz2 − fxyw2 − fdy2wz
= dAxz − dfAyw + fDxw + fdDyz

This verifies Equa.(14) and the proof is complete now. □

Now go back to the proof of Lemma 6.8.

a · (ax2 + 2bxy + cy2)(dz2 + 2bzw + fw2)

= ((ax+ by)2 + ny2)(dz2 + 2bzw + fw2)

= d((ax+ by)z − fyw − byz)2 + 2b(...)(...) + f((ax+ by)w + dyz + byw)

= da2
(
xz − f

a
yw

)2

+ 2ba

(
xz − f

a
yw

)
(...) + f(axw + dyz + wbyw)2

Dividing both sides by a completes the proof.

6.5. Form class groups.

Theorem 6.12. Fix n ∈ Z+ and let D := −4n. For any [P1], [P2] ∈ M+
D/ ∼, choose

Qi ∈ [Pi] such that (Q1, Q2) is Lagrange-great. We define [P1] · [P2] to be the SL2(Z)-
equivalence class containing Q1 ⋆ Q2. Then this makesM+

D/ ∼ into an abelian group.

Definition 6.13. Henceforth (when D = −4n, n ∈ Z+) the set M+
D/ ∼ together with

this group structure is referred to as the form class group (of discriminant D), denoted
as Cl(D).

Proof. One must verify that such a Lagrange-great pair exist, whose task is completed
by Lemma 6.14, and that the definition is independent of the choice of (Q1, Q2), which
follows from Lemma 6.15 below. To verify associativity, one applies additionally Lemma
6.14. □

Lemma 6.14. Given a triple (Q1, Q2, Q3) of quadratic forms with the same discrimi-
nants, there exist Q′

1 ∼ Q1, Q
′
2 ∼ Q2, Q

′
3 ∼ Q3 that are pairwise Lagrange-great.

Proof. One only needs to find the triple (Q′
1, Q

′
2, Q

′
3) with pairwise coprime a-coefficients.

Thanks to CRT, identical b-coefficients can be arranged by applying U for suitably many
times.

It is sufficient to find pairwise coprime elements from Repprim(Q′
1),Rep

prim(Q′
2) and

Repprim(Q′
3). This follows from the last lemma(?) of Lecture 5.

□

Lemma 6.15. Given two Lagrange-great pairs of quadratic forms: (P1, P2) and (Q1, Q2),
written as

P1 = a1x
2 + 2bxy + c1y

2, Q1 = d1x
2 + 2exy + f1y

2;
P2 = a2x

2 + 2bxy + c2y
2, Q2 = d2x

2 + 2exy + f2y
2.

Assume P1 ∼ Q1 and P2 ∼ Q2, then P1 ⋆ P2 ∼ Q1 ⋆ Q2.

6.6. Proof of Lemma 6.15. So we take P1, P2, Q1, Q2 as in the lemma. We will first
treat a special case by hand and the general case would follow by soft arguments.

A special case: P1 = Q1 and gcd(a1, d2) = 1.

By assumption we find

(
p q
r s

)
∈ SL2(Z) such that

(
p q
r s

)(
a2 b
b c2

)(
p r
q s

)
=

(
d2 b
b f2

)
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and we wish to find a conjugate between

(
a1a2 b
b a1

−1c2

)
and

(
a1d2 b
b a1

−1f2

)
. This is

easy:(
a1d2 b
b a1

−1f2

)
=

(√
a1 0

0
√
a1

−1

)(
d2 b
b f2

)(√
a1 0

0
√
a1

−1

)
=

(√
a1 0

0
√
a1

−1

)(
p q
r s

)(
a2 b
b c2

)(
p r
q s

)(√
a1 0

0
√
a1

−1

)
=

(
p a1q

r/a1 s

)(
a1a2 b
b a−1

1 c2

)(
p r/a1
a1q s

)
This is a conjugation by integral matrices if a1 | r. To verify this,(

p q
r s

)(
a2 b
b c2

)(
p r
q s

)
=

(
d2 b
b f2

)
=⇒

(
p q
r s

)(
a2 b
b c2

)
=

(
d2 b
b f2

)(
s −r
−q p

)
=⇒

(
pa2 + qb pb+ qc2
ra2 + sb rb+ sc2

)
=

(
sd2 − qb −rd2 + pb
sb− qf2 −rb+ pf2

)
By comparing the (1, 2)-th entry:

qc2 = −rd2.
Since a1 | c2 and gcd(a1, d2) = 1 , we have the required

a1 | r.
A less special case: gcd(a1, d1d2) = gcd(a2, d1d2) = 1.

Notation 6.16. Given two quadratic forms Q1, Q2, we write Q1 ∼U Q2 iff Q2 = Uλ(Q1)
for some λ ∈ Z. Concretely, if Qi = aix

2 + 2bixy + ciy
2, then

Q1 ∼U Q2 ⇐⇒ a2 = a1, b2 = b1 + λa1, c2 = c1 + 2b1λ+ a1λ
2, ∃λ ∈ Z.

By CRT and the coprime assumption, we can find Pi ∼U P
′
i , Qi ∼U Q

′
i such that they

all have the same b-coefficients. Since it is direct to verify that P1 ⋆ P2 ∼U P ′
1 ⋆ P

′
2 and

Q1 ⋆ Q2 ∼U Q′
1 ⋆ Q

′
2, we might just assume from the beginning that b = e. But then by

the special case applied twice (and our coprime assumption),

P1 ⋆ P2 ∼ P1 ⋆ Q2 ∼ Q1 ⋆ Q2.

The general case.
Thanks to Lemma 6.14, we can find quadratic forms O1, O2 (written as Aix

2+2Bixy+
Ciy

2) such that

(1) O1 ∼ P1 and O2 ∼ P2;
(2) gcd(A1, a1a2d1d2) = 1 and gcd(A2, A1a1a2d1d2) = 1.

By the less special case above (applied twice)

P1 ⋆ P2 ∼ O1 ⋆ O2 ∼ Q1 ⋆ Q2.

The proof of the Lemma is now complete.

6.7. Example. n = 14. We first list the reduced forms :

A := x2 + 14y2, B := 2x2 + 7y2, C := 3x2 + 2xy + 5y2, D := 3x2 − 2xy + 5y2.

One notes that [Q]−1 can be obtained by reversing the signature of b (will be proved next
time). Thus [A] = id, [B]2 = [A] and [C][D] = id.

3x2 + 2xy + 5y2 ∼ 5x2 − 2xy + 3y2 ∼ 3x2 + 8xy + 10y2 = C ′,

3x2 + 2xy + 5y2 ∼ 3x2 + 10xy + 10y2 = C ′′

=⇒ C ′ ⋆ C ′′ = 15x2 + 8xy + 2y2 ∼ 2x2 − 8xy + 15y2 ∼ 2x2 + 7y2.

[A] [B] [C] [D]
[A] [A] [B] [C] [D]
[B] \ [A] [D] [C]
[C] \ \ [B] [A]
[D] \ \ \ [B]

Table 1. Multiplication table of Cl(−56)
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This is a cyclic group of order 4.

6.8. [Not discussed in the lecture]Dirichlet composition. In the rest of this lec-
ture, we will use a slight extension, called Dirichlet composition, of the Lagrange compo-
sition. With little extra work, many analogous properties can be established for Dirichlet
compositions. More importantly, we will show that up to proper equivalence, direct com-
position is obtained by Dirichlet composition. This will complete Gauss’ claim that any
direct composition consists of only one proper equivalence class (see Corollary 6.23).

Definition 6.17. A pair of quadratic forms Q1 = a1x
2 +2b1xy+ c1y

2 and Q2 = a2x
2 +

2b2xy + c2y
2 is said to be Dirichlet-good iff they have the same discriminant −4n for

some n ∈ Z+ and gcd(a1, a2, b1 + b2) = 1. If moreover, b1 = b2 and a1 | c2, a2 | c1, then
we say this pair is Dirichlet-great.

Proposition 6.18. Given a Dirichlet-good pair (Q1, Q2), there exists a unique [B]a1a2 ∈
Z/a1a2Z such that 

B ≡ b1 (mod a1)

B ≡ b2 (mod a2)

B2 ≡ −n (mod a1a2).

For such a B ∈ Z, we define

Q1 ⋆B Q2 := a1a2x
2 + 2Bxy +

B2 + n

a1a2
y2.

This is called the Dirichlet composition of (Q1, Q2).

Proof will be presented in the next subsection.

Corollary 6.19. If the pair (Q1, Q2) is Dirichlet-good, then there exist Q1 ∼U P1 and
Q2 ∼U P2 such that (P1, P2) is Dirichlet-great.

Proof. Choose B as in Proposition 6.18. Write B = b1 + λ1a1 = b2 + λ2a2 for some
λi ∈ Z. Then

Uλ1(Q1) = a1x
2 + 2Bxy + (c1 + 2b1λ1 + a1λ

2
1)y

2;

Uλ2(Q2) = a2x
2 + 2Bxy + (c2 + 2b2λ2 + a2λ

2
2)y

2.

gcd(a1, a2, 2B) = gcd(g, b1 + λ1a1 + b2 + λ2a2) = gcd(g, b1 + b2) = 1.

That a2 | c1+2b1λ1+a1λ
2
1 follows from the proof of Proposition 6.18. See Equa.(16). □

For a Dirichlet-great pair (Q1, Q2), one may simply take B := b1 = b2 write Q1 ⋆ Q2,
dropping the dependence on B

Q1 ⋆ Q2 := Q1 ⋆B Q2 = a1a2x
2 + 2Bxy +

c2
a1
y2.

6.9. [Not discussed in the lecture]Proof of Proposition 6.18.

Lemma 6.20. Given m, l ∈ Z, write m = gm′ and l = gl′ where g := gcd(m, l). Then
we have the following exact sequence:

1 Z/l′m′g Z/mZ× Z/lZ Z/gZ→ 1
φ ψ

where φ : [x]l′m′g → ([x]m, [x]l) and ψ : ([x]m, [y]l) 7→ [x− y]g.

Proof. It is rather direct to show that ψ ◦ φ = 1. It remains to show kerψ ⊂ Imφ. Say
[x]m, [y]l is such that [x]g = [y]g, we must show ([x], [y]) ∈ Imφ.

Since gcd(m′, l′) = 1, we can find λ ∈ Z such that

m′λ ≡ y − x
g

(mod l′).

Multiplying by g, we get

mλ ≡ y − x (mod l).

Setting z := mλ+ x, we get φ([z]L) = ([x], [y]). □
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We turn to the proof of Proposition 6.18. Let g := gcd(a1, a2) and write a1 = ga′1, a2 =
ga′2. Since both forms have the same discriminant:

a1c2 − b21 = a2c2 − b22 =⇒ (b1 − b2)(b1 + b2) ≡ 0 (mod g) =⇒ b1 − b2 ≡ 0 (mod g).

The last implication is due to gcd(a1, a2, b1 + b2) = 1. By Lemma 6.20, we find B1 ∈ Z
such that

B1 ≡ b1 (mod a1), B1 ≡ b2 (mod a2).

It remains to find λ ∈ Z such that

(B1 + λga′1a
′
2)

2 = −n (mod a1a2). (15)

We write B1 = b1 + λ1a1, then
2

−n = B2
1 − a1(c1 + λ12b1 + λ21a1).

Therefore,

− b ≡ b22 − a1(c1 + λ12b1 + λ21a1) (mod a2)

=⇒ 0 ≡ a2c2 ≡ −a1(c1 + λ12b1 + λ21a1) (mod a2)

=⇒ 0 ≡ −a′1(c1 + λ12b1 + λ21a1) (mod a′2)

=⇒ 0 ≡ c1 + λ12b1 + λ21a1 (mod a′2).

(16)

Replacing −n in Equa.(15) by B2
1 − a1(c1 + λ12b1 + λ21a1) , it only remains to show

2B1λga
′
1a

′
2 ≡ −a1(c1 + λ12b1 + λ21a1) (mod a1a2)

Dividing both sides by a1, this would be a consequence of

2B1λa
′
2 ≡ −(c1 + λ12b1 + λ21a1) (mod a2)

Thanks to Equa.(16), we can divide by a′2 on both sides and this is further reduced to

2B1λ ≡ −
c1 + λ12b1 + λ21a1

a′2
(mod g)

which can be solved because gcd(2B1, g) = gcd(b1 + b2, a1, a2) = 1. This completes the
proof of existence of B.

Proof of Uniqueness. It is likely that the uniqueness can already be extracted from the
proof above. Or, if B′ has the same properties as B, then

B′ ≡ B (mod ga′1a
′
2), B′2 ≡ −n (mod a1a2).

Write B′ := B + λga′1a
′
2 and we need to show g | λ.

(B + λga′1a
′
2)

2 ≡ −n (mod a1a2)

=⇒ 2Bλga′1a
′
2 ≡ 0 (mod a1a2)

=⇒ 2Bλ ≡ 0 (mod g).

But gcd(g, 2B) = 1, so λ ≡ 0 (mod g) as desired. □

6.10. [Not discussed in the lecture]Proper equivalence between Dirichlet com-
positions. Similar to Lagrange compositions, we have

Lemma 6.21. For two Dirichlet-great pairs (P1, P2) and (Q1, Q2), if P1 ∼ Q1 and P2 ∼
Q2, then P1 ⋆B P2 = Q1 ⋆B′ Q2 for any choices of B,B′ as in the definition of Dirichlet
compositions.

This follows from the same proof of Lemma 6.15. The proof of a1 | r causes a little
more trouble, but the rest remains the same.

6.11. [Not discussed in the lecture]Direct compositions and Dirichlet compo-
sition.

Theorem 6.22. Let n ∈ Z+ and D = −4n. Take P1, P2 ∈MD and P3 ∈ Comp+(P1, P2).
Then there exists Q1 ∼ P1, Q2 ∼ P2, Q3 ∼ P3 such that (Q1, Q2) is Dirichlet-great and
Q3 = Q1 ⋆ Q2.

Corollary 6.23. Let n ∈ Z+ and D = −4n. For every pair P1, P2 ∈MD, Comp+(P1, P2)
consists of exactly one proper equivalence class.

2This is computing the discriminant of Uλ1 (Q1).
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6.12. [Not discussed in the lecture]Proof of Theorem 6.22. By assumption, there
is an integral matrix

B =

(
α1 β1 η1 θ1
α2 β2 η2 θ2

)
such that

P1(x, y)P2(z, w) = P3 ((α1xz + β1xw + η1yz + θ1yw, α2xz + β2xw + η2yz + θ2yw))

= P3

(
(z, w)

((
α1 α2

β1 β2

)
x+

(
η1 η2
θ1 θ2

)
y

))
= P3

(
(x, y)

((
α1 α2

η1 η2

)
z +

(
β1 β2
θ1 θ2

)
w

))
.

Also, recall that if γ1, γ2, γ3 ∈ SL2(Z), then γ3P3 ∈ Comp+(γ1P1,
γ2P2) and the B is

transformed by3

(γ1, γ3) : γ1

(
α1 α2

η1 η2

)
γ3, γ1

(
β1 β2
θ1 θ2

)
γ3;

(γ2, γ3) : γ2

(
α1 α2

β1 β2

)
γ3, γ2

(
η1 η2
θ1 θ2

)
γ3.

We denote by γB the resulting (coefficients of the) bilinear form. Choose γ1, γ2, γ3 such
that

• min {|α1| , |α2| , ...., |θ2|} is as small as possible.

Modifying γi’s by certain permutations we can further arrange that

• α1 > 0 and α1 = min {|α1| , ...., |θ2|}.

Claim 6.24. α1 = 1.

Proof. Some immediate observation:

• α1 | η1: otherwise we apply suitable γ1 to get something strictly smaller;
• α1 | β1: otherwise apply γ2;
• α1 | α2: otherwise apply γ3.

Actually we may and do modify γ1, γ2, γ3 by certain unipotent matrices such that η1 =
β1 = α2 = 0.

It is also not hard to see that α1 | η1 via (γ1, γ3)-action and α1 | β2 via (γ2, γ3)-action.
Recall that, by the definition of direct composition and Lemma 6.6, we have (write

Qi :=
γiPi)

Q2(1, 0) = α1η2, Q2(0, 1) = −θ1β2, Q2(1, 1) = det

(
α1 β2
θ1 θ2 + η2

)
.

Since Q2 is primitive, the above three numbers must have gcd = 1. But α1 divides all of
them, so α1 = 1.

□

If we write Qi = aix
2 + 2bixy + ciy

2, then we get

η2 = Q2(1, 0) = a2, −β2θ1 = Q2(0, 1) = c2, β2 = Q1(1, 0) = a1, −η2θ1 = Q1(0, 1) = c1.

Thus c2 = −a1θ1 and c1 = −a2θ1. This shows that a1 | c2, a2 | c1 and

a2 + 2b2 + c2 = P2(1, 1) = det

(
1 a1
θ1 a2 + θ2

)
= a2 + θ2 − a1θ1

a1 + 2b1 + c1 = P2(1, 1) = det

(
1 a2
θ1 a1 + θ2

)
= a1 + θ2 − a2θ1

=⇒ b1 = b2 =: b, θ2 = 2b.

This shows that (Q1, Q2) is Dirichlet-great and Q3 = Q1 ⋆ Q2 by Lemma 6.8 and

γB =

(
1 0 0 − c1

a1
0 a1 a2 2b

)
.

7. Revisit genus theory

RecallM+
D/ ∼ equipped with the group structure is denoted as Cl(D).

3Though it is not necessary to know this, but the action of γ1 and γ2 commutes.
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7.1. The inverse element.

Lemma 7.1. Given a, b, c ∈ Z with gcd(a, b, c) = 1, there exists r ∈ Z such that gcd(a, c+
br + ar2) = 1.

Proof. Let cr := c+ br + ar2 and Pa be the set of prime factors of a. For each p ∈Pa,
let Rp := {r ∈ Z | p | cr}. Thus,

gcd(a, cr) = 1, ∃ r ∈ Z ⇐⇒
⋃

p∈Pa

Rp ̸= Z.

Since gcd(a, b, c) = 1, p | a and p | cr for some r ∈ Z imply that p ∤ b. For p ∈ Pa and
r1, r2 ∈ Rp, we have

p | cr1 − cr2 = a(r21 − r22) + b(r1 − r2) =⇒ p | r1 − r2.
This shows that⋃

p∈Pa

Rp ⊂ {x ∈ Z | x ≡ rp (mod p), ∀ p ∈Pa with Rp ̸= ∅} ,

which is a proper subset of Z by Chinese remainder theorem. □

Proposition 7.2. Let Q = ax2 + 2bxy + cy2 be a quadratic form of discriminant D =
−4n < 0 and [Q] be its image in Cl(D). Then [Q]−1 = [Q−] with Q− := ax2−2bxy+cy2.

Proof. By Lemma 7.1, we can selectQ1 = a1x
2+2b1xy+c1y

2 ∈ [Q] such that gcd(a1, c1) =
1. Thus Q2 := T (Q1) = c1x

2−2b1xy+a1y
2 ∈ [Q] and Q−

1 = a1x
2−2b1xy+ c1y

2 ∈ [Q−].
The pair (Q−

1 , Q2) is Lagrange-great and their Lagrange composition is

Q3(x, y) = a1c1x
2 − 2b1xy + y2,

showing that [Q3] = id. □

Lemma 7.3. Let D = −4n for some n ∈ Z+. Take Q = ax2 + 2bxy + cy2 ∈M+
D. Then

[Q] is the identity element in Cl(D) (that is, Q ∼ Qprin
D = x2 + ny2) iff 1 ∈ Rep(Q).

Proof. =⇒: Q ∼ Qprin
D =⇒ 1 ∈ Rep(Qprin

D ) = Rep(Q).
⇐=: 1 ∈ Rep(Q) =⇒ Q′ = x2 + 2bxy + cy2 for some Q′ ∼ Q. Applying U−b to Q′

one obtains Qprin
D . □

7.2. 2-torsion elements.

Lemma 7.4. Let D = −4n for some n ∈ Z+. Take Q = ax2 + 2bxy + cy2 ∈ Mred,+
D .

Then
[Q] ∈ Cl(D) has order ≤ 2 ⇐⇒ b = 0 or a = 2b or a = c.

Proof. [Q] has order≤ 2 iff its inverse is equal to itself, that is, iffQ− is properly equivalent
to Q.

If |2b| < a < c, then Q− is reduced and hence Q = Q− by uniqueness of reduced forms,
implying b = 0.

If |2b| = a, then 2b = a by the definition of reduced forms.
If a = c, then we are also done.
Conversely, we must show Q ∼ Q− when b = 0 or a = 2b or a = c. Indeed, b = 0 =⇒

Q = Q−, a = 2b =⇒ Q− = U−1(Q) and a = c =⇒ Q− = T (Q). So we have Q ∼ Q−

in each case. □

Notation 7.5. Given an abelian group A, let A[2] be the 2-torsion subgroup: {a ∈
A, a2 = 1}.

Using the above lemma, its possible to obtain nontrivial information about Cl(D)[2].
Here is one example

Example 7.6. Cl(−164) ∼= Z/8Z.

Proof. By listing all reduced forms

1x2 + 0xy + 41y2; 2x2 + 2xy + 21y2; 3x2 − 2xy + 14y2; 3x2 + 2xy + 14y2;

5x2 − 4xy + 9y2; 5x2 + 4xy + 9y2; 6x2 − 2xy + 7y2; 6x2 + 2xy + 7y2,

we find #Cl(−164) = 8 and that there is only one element of order 2. This gives the
conclusion. □

By further computation, we can find
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Proposition 7.7. Let D = −4n for some n ∈ Z+. Let r be the number of distinct odd
prime numbers dividing D. Define

µ :=


r n ≡ 3 (mod 4)

r + 1 n ≡ 1, 2 (mod 4)

r + 1 n ≡ 4 (mod 8)

r + 2 n ≡ 0 (mod 8)

.

Then #Cl(D)[2] = 2µ−1.

7.3. Proof of Proposition 7.7. Without loss of generality, we shall assume n ≥ 2.

Elements inMred,+
−4n ∩ Cl(D)[2] can be divided into three disjoint types by Lemma 7.4:

Type 1. ax2 + cy2 with 0 < a < c, a, c ∈ Z, gcd(a, c) = 1, ac = n;
Type 2. 2bx2+2bxy+ cy2 with b, c ∈ Z+, 2b < c, gcd(b, c) = 1, c is odd and (2c− b)b = n;
Type 3. ax2 + 2bxy + ay2 with a, b ∈ Z+, 2b < a, gcd(a, b) = 1, a is odd and a2 − b2 = n.

Type 1 forms are in bijection with

Type1 ∼=
{
(a, c) ∈ Z2

∣∣ 0 < a < c, gcd(a, c) = 1, ac = n
}
.

So its cardinality is nothing but all possible ways of dividing distinctive prime factors of
n into two parts: allowing one of them to be empty. Thus,

#Type 1 =

{
2r−1 if n is odd.

2r if n is even.

Type 2 and 3 elements are more complicated and will be considered together.
Note that sending (b, c) 7→ (l,m) := (b, 2c− b) gives a bijection (with the inverse being

(l,m) 7→ (b, c) := (l, (l +m)/2)) between{
(b, c) ∈ R2

∣∣ n = b(2c− b), 0 < 2b < c
} ∼= {(l,m) ∈ R2

∣∣ n = lm, 0 < 3l < m
}

(17)

Similarly (a, b) 7→ (l,m) := (a+ b, a− b) gives a bijection (with inverse given by (l,m) 7→
(a, b) := ((l +m)/2, (m− l)/2)) between{

(a, b) ∈ R2 | 0 < 2b < a, n = a2 − b2
} ∼= {(l,m) ∈ R2 | n = lm, 0 < l < m < 3l

}
(18)

Proof when n ≡ 1 (mod 4)

By restricting to suitable subsets, Type 2 elements are in bijection with:{
(b, c) ∈ R2

∣∣∣∣ b, c ∈ Z2, c is odd, gcd(b, c) = 1,
n = b(2c− b), 0 < 2b < c

}
∼=

(l,m) ∈ R2

∣∣∣∣∣∣
l,m ∈ Z, l + m ≡ 0 (mod 2),
l+m ≡ 2 (mod 4), gcd(l,m) = 1,
n = lm, 0 < 3l < m


(19)

Indeed,

b, c ∈ Z2 ⇐⇒ l,
l +m

2
∈ Z2 ⇐⇒ l,m ∈ Z2, l +m ≡ 0 (mod 2).

c is odd ⇐⇒ l +m

2
is odd ⇐⇒ l +m ≡ 2 (mod 4)

Finally, under the above conditions l must be odd. Thus

gcd(b, c) = 1 ⇐⇒ gcd(l,
l +m

2
) = 1 ⇐⇒ gcd(l, l +m) = 1 ⇐⇒ gcd(l,m) = 1.

This verifies Equa.(19).
The right hand side of Equa.(19) can be further simplified. Indeed, n ≡ 1 (mod 4) im-

plies that l ≡ m (mod 4). Thus l+m ≡ 0 (mod 2) and l+m ≡ 2 (mod 4) automatically
hold. So

Type 2 ∼=
{
(l,m) ∈ Z2

∣∣ gcd(l,m) = 1, n = lm, 0 < 3l < m
}
. (20)

Type 3 elements can be analyzed in a similar fashion:{
(a, b) ∈ R2

∣∣∣∣ a, b ∈ Z2, a is odd, gcd(a, b) = 1,
n = (a− b)(a+ b), 0 < 2b < a

}
∼=

(l,m) ∈ R2

∣∣∣∣∣∣
l,m ∈ Z, l + m ≡ 0 (mod 2),
l+m ≡ 2 (mod 4), gcd(l,m) = 1,
n = lm, 0 < l < m < 3l


(21)

The blue and orange part is the same. The pink part is also similar

gcd(a, b) = 1 ⇐⇒ gcd(
l +m

2
,
−l +m

2
) = 1 ⇐⇒ gcd(

l +m

2
,m) = 1 ⇐⇒ gcd(l+m,m) = gcd(l,m) = 1.
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This verifies Equa.(21), which is further simplified as

Type 3 ∼=
{
(l,m) ∈ Z2

∣∣ gcd(l,m) = 1, n = lm, 0 < l < m < 3l
}

(22)

Combining Equa.(20) and (22), we get (note that m = 3l never happens)

Type 2 ⊔ Type 3 ∼=
{
(l,m) ∈ Z2

∣∣ n = lm, gcd(l,m) = 1, 0 < l < m.
}

which is in bijection with partition of prime factors of n. So it has cardinality 2r/2 = 2r−1.
Thus

#Type 1 + #Type 2 or 3 = 2r−1 + 2r−1 = 2r.

Proof when n ≡ 2, 3 (mod 4).

In this case, there are no Type 2 or 3 elements.
For type 2 forms, since c is odd, 2c ≡ 2 (mod 4) and

n = 2cb− b2 ≡ 2b− b2 ≡

{
2− 1 ≡ 1 (mod 4) if b is odd

0− 0 ≡ 0 (mod 4) if b is even

For type 3 forms, since a is odd, we have a2 ≡ 1 (mod 4), so

n = a2 − b2 ≡ 1− b2 ≡

{
0 (mod 4) if b is odd

1 (mod 4) if b is even
.

So we are also done in these two cases.

Proof when n ≡ 4 (mod 8).

In this case there are also no type 2/3 forms.
For a type 2 form 2bx2+2bxy+cy2, we have that c is odd. In order that n = 2bc−b2 ≡ 0

(mod 4), we must have b is even. Write b = 2b′ for some b′ ∈ Z. So n = 4b′(b′ − c). But
one of b′ or b′ − c has to be even, we have n ≡ 0 (mod 8).

For a type 3 form ax2 + 2bxy + ay2, we have that a is odd. But n = a2 − b2 is even,
so b is also odd. But then a2 ≡ b2 ≡ 1 (mod 8), showing that n ≡ 0 (mod 8).

So the proof is complete in this case.

Proof when n ≡ 0 (mod 8).

Sending (b, c) 7→ (l,m) :=

(
b

2
, c− b

2

)
and (a, b) 7→ (l,m) :=

(
a− b
2

,
a+ b

2

)
give

bijections between{
(b, c) ∈ R2

∣∣ n = b(2c− b), 0 < 2b < c
} ∼= {(l,m) ∈ R2

∣∣ n/4 = lm, 0 < 3l < m
}{

(a, b) ∈ R2
∣∣ n = (a− b)(a+ b), 0 < 2b < a

} ∼= {(l,m) ∈ R2
∣∣ n/4 = lm, 0 < l < m < 3l

}
Restricting to subsets, they induce bijections{
(b, c) ∈ R2

∣∣∣∣ b, c ∈ Z2, c is odd, gcd(b, c) = 1,
n = b(2c− b), 0 < 2b < c

}
∼=
{
(l,m) ∈ R2

∣∣∣∣ l,m ∈ Z, l + m ≡ 1 (mod 2),
gcd(l,m) = 1, n = lm, 0 < 3l < m

}
(23)

and{
(a, b) ∈ R2

∣∣∣∣ a, b ∈ Z2, a is odd, gcd(a, b) = 1,
n = (a− b)(a+ b), 0 < 2b < a

}
∼=

{
(l,m) ∈ R2

∣∣∣∣∣ l,m ∈ Z, l + m ≡ 1 (mod 2),
gcd(l,m) = 1, n = lm, 0 < l <
m < 3l

}
(24)

We explain why Equa.(23) holds and omit the proof for Equa.(24). Note that n
4 = lm

excludes the possibility l,m ∈ Z
2 \ Z.

b, c ∈ Z ⇐⇒ 2l, l +m ∈ Z ⇐⇒ l,m ∈ Z

c is odd ⇐⇒ l +m ≡ 1 (mod 2)

Finally, under the above conditions

gcd(b, c) = 1 ⇐⇒ gcd(2l, l +m) = 1 ⇐⇒ gcd(l, l +m) = gcd(l,m) = 1.

One also observes that l+m ≡ 1 (mod 2) is redundant: it can be deduced from lm being
even and gcd(l,m) = 1. Therefore,

Type 2 ⊔ Type 3 ∼=
{
(l,m) ∈ Z2

∣∣∣ n
4
= lm, gcd(l,m) = 1, 0 < l < m.

}
,

which has cardinality 2r. Combined with type 1 elements, there are 2r + 2r = 2r+1 in
total. The proof of Proposition 7.7 is now complete.
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7.4. Genus number, I. Let n ∈ Z+, D = −4n and Q ∈ M+
D. We already knew that

Rep×(Q,mod) is a coset of HD := Rep×(Qprin
D ,mod), which is a subgroup of kerχD.

Sending [Q] to Rep×(Q,mod) gives us a map Φ : Cl(D)→ ker(χD)/HD.

Lemma 7.8. Φ is a group homomorphism.

Proof. By definition, identity element is preserved.
Take [Q1], [Q2] ∈ Cl(D). Replacing by another proper equivalent forms, we assume

(Q1, Q2) is Lagrange-great and so Q3 := Q1 ⋆Q2 is a direct composition. This shows that

Rep×(Q3,mod) ⊂ Rep×(Q1,mod) · Rep×(Q2,mod)

But all of them are cosets of HD. So actually equality holds. This shows Φ([Q1] · [Q2]) =
Φ([Q1 ⋆ Q3])) = Φ([Q1]) · Φ([Q2]). □

Therefore,M+
D/ ∼Genus

∼= ker(χD)/HD.

Lemma 7.9. ker(χD)/HD is a 2-torsion abelian group. Hence #M+
D/ ∼Genus is a power

of 2.

Proof. This comes from the fact that Qprin
D is a naive composition of Q with itself for

every Q ∈M+
D. □

7.5. Genus number, II. Let n ∈ Z+ and D := −4n as usual. So far we know the
following

• For every Q ∈ M+
D, [Q]2 ∈ Genus(x2 + ny2). That is, Cl(D)2 ⊂ Genus(x2 +

ny2)/ ∼;
• Consider the endomorphism

Cl(D)→ Cl(D)

[Q] 7→ [Q]2

We find that

#Cl(D)

#Cl(D)[2]
= #Cl(D)2 =⇒ #Cl(D)/Cl(D)2 = #Cl(D)[2]

• [Q] 7→ Rep×([Q],mod) induces
Cl(D)

Genus(x2 + ny2)
∼=

ker(χD)

HD
.

• #Cl(D)[2] = 2µ−1.

We are now going to show

Theorem 7.10. The index of HD in (Z/DZ)× is 2µ.

Combining with the facts listed above, we obtain

Corollary 7.11. Cl(D)2 = Genus(x2 + ny2) and Cl(D)/Cl(D)2 ∼= ker(χD)/HD.

In words, every principal genus form arises from a duplication.
Before starting the proof, we record some group theoretic lemmas.

Lemma 7.12. Let p be an odd prime and l ∈ Z+. Then as a group (Z/plZ)× is isomor-
phic to Z/pl−1Z× (Z/pZ)×.
Proof. There is a natural exact sequence

1 (1 + pZ)/plZ (Z/plZ)× (Z/pZ)× 1.

Since #((1 + pZ)/plZ) = pl−1, which is coprime to p− 1, we know by structure theorem
of abelian group that

(Z/plZ)× ∼= (1 + pZ)/plZ× (Z/pZ)×.
Next we show that [1 + p]pl is an element of order pl−1 and hence makes (1 + pZ/plZ)
a cyclic group of order pl−1. This follows from the elementary fact that raising to p-th
power maps (for each k ∈ Z+)

1 + pkZ \ 1 + pk+1Z→ 1 + pk+1Z \ 1 + pk+2Z
x 7→ xp

(25)

Indeed, for λ coprime to p,

(1 + λpk)p ∈ 1 + λpk+1 + pk+2Z.

From Equa.(25), we conclude that (1+p)p
l−2 ∈ 1+pl−1Z\1+plZ and (1+p)p

l ∈ 1+plZ.
This shows that ord([1 + p]pl) = pl−1. Therefore it generates 1 + pZ/plZ. □
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Lemma 7.13. Let l ∈ Z≥3. There is a canonical isomorphism (Z/2lZ)× ∼= {±1} ×
Z/2l−2Z where ±1 goes to [±1]2l and the [1] ∈ Z/2l−2Z is sent to [5]2l .

Proof. The map defined in the statement is a group homomorphism from {±1}×Z/2l−2Z
to (Z/2lZ)×. Indeed, since 5 ≡ 1 (mod 4), the order of [5]2l is at most

1

2
·#(Z/2lZ)×.

But #(Z/2lZ)× = 2l−1 (the number of odd numbers in 0, 1, 2, ..., 2l−1), so ord[5]2l | 2l−2,
showing that the homomorphism is well-defined.

Next we check that ord[5]2l = 2l−2 and so this homomorphism is really an isomorphism.
Similar to the odd prime case, we have that for k ∈ Z≥2 (not true if k = 1!), taking square
gives

1 + 2kZ \ 1 + 2k+1Z→ 1 + 2k+1Z \ 1 + 2k+2Z
x 7→ x2

(26)

Hence (1 + 4)2
l−3 ∈ 1 + 2l−1Z \ 1 + 2lZ, showing that ord([5]2l) = 2l−2. This completes

the proof. □

7.6. [Not discussed in the class]Interpretation HD as kernel of characters. We
define group homomorphisms4

• For i = 1, ..., r, χi([x]D) :=

(
x

pi

)
.

• δ([x]D) := (−1) x−1
2 ;

• ϵ([x]D) := (−1) x2−1
8 .

Since the targets are {±1}, these characters are determined by the kernels, which admit
a more concrete description. Note that if n = 2k

∏r
i=1 p

ai
i where pi’s are distinct odd

primes, then

(Z/DZ)× = (Z/22+kZ)× × (Z/pa11 Z)× × ...× (Z/parr Z)×

Also note that (Z/2k+2Z)× ∼= (Z/4Z)× × Z/2kZ canonically.

• For each i ∈ {1, ..., r},

x ≡ □ (mod paii ) ⇐⇒ χi([x]D) = 1.

•
δ([x]D) = 1 ⇐⇒ the image of [x]D in (Z/4Z)× is [1]4.

•
ϵ([x]D) = 1 ⇐⇒ the image of [x]D in Z/2kZ lies in 2Z/2kZ.

•

(ϵ · δ)([x]D) = 1 ⇐⇒ the image of [x]D in (Z/4Z)× × Z/2Z lies in {(1, 0), (−1, 1)}.

Let AD,odd := {χ1, ..., χr} and

AD :=



AD,odd n ≡ 3 (mod 4)

AD,odd ∪ {δ} n ≡ 1 (mod 4)

AD,odd ∪ {δ · ϵ} n ≡ 2 (mod 8)

AD,odd ∪ {ϵ} n ≡ 6 (mod 8)

AD,odd ∪ {δ} n ≡ 4 (mod 8)

AD,odd ∪ {δ, ϵ} n ≡ 0 (mod 8)

Note that #AD = µ. Finally, let ΨD : (Z/DZ)× → (Z/2Z)µ by ΨD([x]D) =
⊕

χ∈A χ([x]D).
The proof presented below actually reveals the following:

Theorem 7.14. Let n ∈ Z+ and D = −4n. Then HD = kerΨD.

4In general, homomorphisms from a group to C× are referred to as characters. Finite abelian groups

are determined up to isomorphism by its group of characters.
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7.7. Proof of Theorem 7.10. Case 1, n is odd.
Write n =

∏r
i=1 p

ai
i . By CRT,

Rep×(D) = Rep×(4)× Rep×(pa11 )× ...× Rep×(parr )

= Rep×(4)× (Z/pa11 Z)×2 × ...× (Z/parr Z)×2
.

By Lemma 7.12, each (Z/paii Z)×2
has index 2 in (Z/paii Z)×.

If n ≡ 1 (mod 4), then

Rep×(4) =
{
x2 + y2 (mod 4)

}×
= {[1]4}

In this case the index of HD in (Z/DZ)× is

2 · 2r = 2r+1 = 2µ (µ = r + 1 in this case)

If n ≡ 3 (mod 4), then

Rep×(4) =
{
x2 − y2 (mod 4)

}×
= {[1]4, [3]4}.

In this case the index of HD in (Z/DZ)× is

1 · 2r = 2r = 2µ (µ = r in this case).

Case 2, n ≡ 2 (mod 4).
Write n = 2 · pa11 · ... · parr . By CRT,

Rep×(D) = Rep×(8)× (Z/pa11 Z)×2 × ...× (Z/parr Z)×2
.

But
Rep×(8) = {x2 + ny2 (mod 8)}×.

Note that x has to be odd so x2 ≡ 1 (mod 8). If y is even, then ny2 ≡ 0 (mod 8). If y is
odd, then ny2 ≡ n (mod 8). So

Rep×(8) =

{
{[1]8, [3]8} if n ≡ 2 (mod 8)

{[1]8, [7]8} if n ≡ 6 (mod 8)
.

In any case, the index in (Z/DZ)× is 2 · 2r = 2r+1 = 2µ since µ = r + 1 here.
Case 3, n ≡ 4 (mod 8).
Write n = 4 · pa11 ...parr . By CRT,

Rep×(D) = Rep×(16)× (Z/pa11 Z)×2 × ...× (Z/parr Z)×2
.

And
Rep×(16) = {x2 + ny2 (mod 16)}×.

Note that x has to be odd so x2 ≡ 1, 9 (mod 16). If y is even, then ny2 ≡ 0 (mod 16). If
y = 2y′ + 1 is odd, then

ny2 ≡ 4ny′2 + 4ny′ + n ≡ n (mod 16).

So there are two cases n ≡ 4 or 12 (mod 16). In either case, one has

Rep×(8) = {[1]16, [5]16, [9]16, [13]16}.
Therefore, the index in (Z/DZ)× is 2 · 2r = 2r+1 = 2µ since µ = r + 1 here.

Case 4, n ≡ 0 (mod 8).
Write n = 2l · pa11 ...parr with l ≥ 3. By CRT,

Rep×(D) = Rep×(2l+2)× (Z/pa11 Z)×2 × ...× (Z/parr Z)×2
.

As above,
Rep×(2l+2) = {x2 + ny2 (mod 2l+2)}×

Under the isomorphism (Z/2l+2Z)× ∼= {±1} × ⟨[5]⟩, {x2 (mod 2l+2)}× is equal to {1} ×
⟨[5]2⟩. On the other hand x2 + ny2 ≡ 1 (mod 4), showing that

Rep×(2l+2) = {1} × ⟨[5]2⟩ or {1} × ⟨[5]⟩.
We confirm the former case by showing [5] /∈ Rep×(2l+2).

If y is even, then ny2 ≡ 0 (mod 2l+2). If y = 2y′ + 1 is odd, then

ny2 ≡ 4ny′2 + 4ny′ + n ≡ n (mod 2l+2)

However,

x2 ∈ 1 + 23Z =⇒ x2 + n ∈ 1 + 23Z =⇒ 5 ̸≡ x2 + n (mod 2l+2).

So the index in (Z/DZ)× is 2× 2× 2r = 2r+2 = 2µ.
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7.8. When is genus = class? Here is a summary on what we have done:

Theorem 7.15. Let n ∈ Z+ and D := −4n. TFAE:

(1) Genus(Q) consists of only one proper equivalence class [Q] for every Q ∈M+
D;

(2) Every positive definite reduced quadratic form of discriminant D takes the form:
ax2 + cy2, 2bx2 + 2bxy + cy2, ax2 + 2bxy + ay2;

(3) The form class group is 2-torsion: Cl(D)[2] = Cl(D);
(4) The form class number is equal to h(D) = 2µ−1.

Recall that there exists a necessary and sufficient congruence condition for p = x2+ny2

(for p ∤ −4n) when each Genus(Q) consists of only one proper equivalence class. To check
this, it is sufficient to know the class number (well, we only know how to get the class
number by listing reduced forms, but maybe there are other ways...). Euler listed 65
many n’s such that ∼ ⇐⇒ ∼Genus and Gauss conjectured that the list is complete..
Under GRH, this has been confirmed.

Let us end this lecture with such an example.

Example 7.16. Take n = 240. It can be checked that h(−4n) = 8. On the other hand,
240 = 24 · 3 · 5. So r = 2 and µ = r+ 2 = 4. So 2µ−1 = 8 = h(−4n). Thus we have for a
prime number p ̸= 2, 3, 5,

p = x2 + 240y2 ∃ x, y ∈ Z ⇐⇒ p ≡ x2 + 240y2 (mod 960) ∃ x, y ∈ Z

Working out the latter condition explicitly (by computer) we obtain

p = x2 + 240y2 ∃ x, y ∈ Z ⇐⇒
p ≡ 1, 289, 481, 769, 169, 361, 841, 409, 649, 601, 49, 529, 721, 241, 121, 889 (mod 960)

Note that there are exactly 32×2×4
2×8 = 16 congruence classes as expected.

8. Arithmetic of Z[ω]

Let ω := e2πi/3 be a cubic root of unity. Explicitly ω =
−1 +

√
−3

2
. It satisfies

ω2 + ω + 1 = 0.

So ω is an algebraic integer and we let Z[ω] be the subring of C generated by Z and ω. As
an abelian group (or Z-module) Z[ω] ∼= Z⊕Z.ω. Every element x ∈ Z[ω] can be uniquely
written as a+ bω for some a, b ∈ Z.

We wish to do “arithmetic” just as we do in Z. We want unique factorization into
primes, residue fields, Bezout theorems. We will also discuss relations between primes in
Z[ω] and those in Z.

8.1. Norm map, Division with remainders and Units. For α ∈ Z[ω], we let
Nm (α) := α · α. It is a positive integer unless α = 0. If α = a+ bω, then

Nm(α) = (a+ bω)(a+ bω) = a2 − ab+ b2.

Lemma 8.1. For nonzero x, y ∈ Z[ω], there exists z ∈ Z[ω] such that if we define r ∈ Z[ω]
by x = yz + r, then Nm(r) ⪇ Nm(y).

Proof. Find α, β ∈ Q such that

x

y
=

x · y
Nm(y)

= α+ βω.

Choose a, b ∈ Z such that |a− α| , |b− β| ⪇ 1
2 . We let z := a+ bω. Then

Nm(x− yz) = Nm(y) ·Nm((α− a) + (β − b)ω) ≤ 3

4
Nm(y) ⪇ Nm(y) .

□

This shows that Z[ω] is an Euclidean domain.
One can characterize units (x ∈ Z[ω] is said to be a unit iff xy = 1 for some y ∈ Z[ω]

and the set of units is denoted as Z[ω]× or U(Z[ω])) in terms of Nm (·).

Lemma 8.2. Z[ω]× = {x ∈ Z[ω] | Nm(x) = 1} =
{
1,−1, ω,−ω, ω2 = −1− ω,−ω2 = 1 + ω

}
.
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Proof. If x ∈ Z[ω]×, then xy = 1 for some y ∈ Z[ω]. So Nm (x)Nm (y) = Nm(1) = 1,
forcing Nm (x) = Nm(y) = 1. Conversely, if Nm (x) = 1, then x is the inverse of x.

The list of units is obtained by solving the equation

Nm(a+ bω) = a2 − ab+ b2 = (a− 1

2
b)2 +

3

4
b2 = 1.

The details are omitted. □

8.2. Ring theoretical properties.

Definition 8.3. Let R be a unital commutative ring, that is, R is equipped with two binary
operations +,× and two distinguished elements 0, 1 satisfying certain assumptions5. A
subset I ⊂ R is said to be an ideal iff

(1) I is an additive subgroup;
(2) R · I ⊂ I.

Equivalently, an ideal is an R-submodule of R. For x ∈ R, R · x is an ideal and is called
the ideal generated by x, written as ⟨x⟩. An ideal is said to be principal iff it is generated
by a single element. If all ideals are principal, then we call R a principal ideal domain.

Notation 8.4. I ⊴ R means I is an ideal of R.

Lemma 8.5. The ring Z[ω] is a principal ideal domain.

Proof. Take I ⊴ Z[ω] and choose x0 ∈ I satisfying

Nm (x0) = min {Nm(x) | x ∈ I, x ̸= 0}
We claim that I = ⟨x0⟩. Otherwise, take y ∈ I \ ⟨x0⟩. Then y = z · x0 + r0 for some
Nm(r0) < Nm(x0). But r0 ∈ I, leading to a contradiction. □

Notation 8.6. For x, y ∈ R, write x | y iff ⟨x⟩ ⊃ ⟨y⟩ or equivalently, y = xr for some
r ∈ R.

Definition 8.7. An ideal I ⊴ R is said to be prime iff xy ∈ I =⇒ x or y ∈ I. An ideal
I ⊴ R is said to be maximal iff I ̸= R and the only ideals containing I are I and R.

Definition 8.8. Let R be a unital commutative ring. R is said to be a field if every
nonzero element is invertible.

Corollary 8.9. Every prime ideal of Z[ω] is actually maximal. Thus Z[ω]/p is a field
for any prime ideal p.

Proof. Let p ⊴ Z[ω] be a prime ideal contained in another ideal a ̸= p,Z[ω]. By last
proposition, p = ⟨x0⟩ and a = ⟨a0⟩ for some a0, x0 ∈ Z[ω].

Thus x0 = a0y0 for some y0 ∈ R. By assumption, a0 /∈ ⟨x0⟩. But ⟨x0⟩ is a prime
ideal, so y0 is in ⟨x0⟩. So y0 = r0x0 for some r0 ∈ R, implying x0 = a0r0x0. So a0r0 = 1
showing that a0 is a unit. This is a contradiction. □

8.3. Unique factorization into primes. The notion of prime numbers can be gener-
alized to rings in two ways.

Definition 8.10. An element π ∈ Z[ω] is said to be a prime iff the ideal generated by
π is a prime ideal, that is to say, if xy ∈ ⟨π⟩ for two elements x, y ∈ Z[ω] then one of
x, y has to be in ⟨π⟩. An element π ∈ Z[ω] is said to be irreducible iff π = xy for two
elements x, y ∈ Z[ω] implies one of x or y has to be a unit.

By definition π ∈ Z[ω] is prime iff π | xy =⇒ π | x or π | y.

Lemma 8.11. Let π ∈ Z[ω]. Then π is a prime iff π is irreducible.

Proof. First let us assume π is a prime and suppose π = xy for some x, y ∈ Z[ω]. We
must show one of them is a unit. Indeed, we know that one of them belongs to ⟨π⟩. Say
x ∈ ⟨π⟩, so x = πx′ for some x′ ∈ Z[ω]. So π = xy = πx′y =⇒ 1 = x′y. So y is a unit.

On the other hand, suppose π is irreducible. Assume x, y /∈ ⟨π⟩ and it suffices to show
xy /∈ ⟨π⟩. Since Z[ω] is a PID, we find x′ such that ⟨π, x⟩ = ⟨x′⟩. Write π = x′ · π′. Since
⟨π, x⟩ ̸= ⟨π⟩, π′ is not a unit. But π is irreducible, so x′ must be a unit and ⟨x′⟩ = Z[ω]
and we can find a, b ∈ Z[ω] such that ax+bπ = 1. Multiplying by y, we get axy+bπy = y.
Since y /∈ ⟨π⟩, we must have xy /∈ ⟨π⟩. □

5(R,+, 0) is an Abelian group, (R,×, 1) is an Abelian semi-group and (x+ y)× z = x× z + y × z.
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Lemma 8.12. The ring Z[ω] is a UFD(:= Unique factorization domain). Namely,
two things hold

(1) For every nonzero x ∈ Z[ω] \ Z[ω]×, there exist (π1, ..., πl) irreducible and non-

unital elements in Z[ω] such that x =
∏l
i=1 πi.

(2) If x =
∏m
j=1 qj is another factorization into irreducible non-unital elements, then,

up to reordering, m = l and qi = piui for some units ui.

Proof of (1). Consider all possible ways of writing x as a product of {π1, ..., πl} with each
πi non-unital. Fix such a set such that l is as large as possible. l can not be infinity as
2l ≤ Nm(x). Thus every πi must be irreducible. □

Proof of (2). Say
x = q1 · ... · ql = π1 · .... · πk

Since irreducible = prime, we have

q1 | π1 · .... · πk =⇒ q1 | πσ1

for some σ1 ∈ {1, ..., k}. But they are both irreducible, so they are differed by a unit
πσ1

= q1u1. By permuting, we assume σ1 = 1 and we are left with

x/q1 = q2 · ... · ql = u1 · π2 · ... · πk
It suffices to repeat the above process. □

We can also define the notion of coprime. Two elements are said to be coprime iff the
primes dividing them are disjoint from each other.

Lemma 8.13. If x, y ∈ Z[ω] are coprime, then αx+ βy = 1 for some α, β ∈ Z[ω].

Proof. Let z be such that ⟨z⟩ = ⟨x, y⟩. Then any prime dividing z necessarily divides
both x, y. By assumption, there is no such primes. That is to say, z is a unit. □

8.4. Classification of prime ideals.

Theorem 8.14. Let p ∈ Z+ be a prime number, then
p = −ω2(1− ω)2 p = 3.

p = π · π for some primes π ∈ Z[ω] p ≡ 1 (mod 3)

p remains a prime in Z[ω] p ≡ 2 (mod 3)

Proof. That 3 = −ω2(1− ω)2 can be checked directly.
So let p̸=3 ∈ Z+ be a prime number, factorized as p = π1 · ... · πl in Z[ω]. Then

p2 = Nm(p) =
∏

Nm(πi) =⇒ l = 1, 2

When l = 2, p = Nm(π1) = π1 · π1 = Nm(π2) = π2 · π2. So p = π1 · π1 is the prime
factorization. If π1 = x + yω, then p = x2 − xy + y2. Modulo 3 implies that p ≡ 1
(mod 3).

It remains to assume l = 1 and we are going to show p ≡ 2 (mod 3). If not, then p ≡ 1
(mod 3). By HW16, p = x2 − xy + y2 = Nm(x+ yω) for some y, z ∈ Z. One sees that
x+ yω is not a unit so p is not a prime. This is a contradiction. □

Theorem 8.15. Let π be a prime element in Z[ω], then either π = p is a prime number
in Z with p ≡ 2 (mod 3), or Nm(π) = p is a prime number in Z with p ≡ 1 (mod 3), or
⟨π⟩ = ⟨1− ω⟩.

Proof. Let π be a prime. Then n = π · π is an integer in Z. By uniqueness of prime
factorization, n is either p or p2 for some prime number p. Moreover, in the latter case,
p = πu for some unit u. This finishes the proof. □

Lemma 8.16. Let ⟨π⟩ be a prime ideal of Z[ω], then Z[ω]/⟨π⟩ is a field consisting of
Nm(π) elements.

Proof. That it is a field follows from the fact that prime ideals are maximal.
If π = p is a prime number in Z, then Z[ω]/⟨p⟩ ∼= Z/pZ⊕Z/pZ.ω as an additive group.

So it has p2 = Nm(p) many elements.
Then assume π ·π = p for some prime number p ∈ Z. On the other hand Z[ω]/pZ[ω]→

Z[ω]/⟨π⟩ is surjective homomorphism with nontrivial kernel, so #Z[ω]/⟨π⟩ | #Z[ω]/pZ[ω] =
p2 and not equal to it. Thus #Z[ω]/⟨π⟩ = p = Nm(π). □

6We will see another proof in the next lecture.
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Also note that in whichever case ⟨π⟩ ∩Z = p.Z. Indeed if n = π ·x for some n ∈ Z and
x ∈ Z[ω], by taking norm on both sides we get

n2 = p ·Nm(x) =⇒ p | n.

Thus, the natural map Z/pZ → Z[ω]/⟨π⟩ is injective, which may be viewed as a finite
field extension.

8.5. Associates and primary elements.

Definition 8.17. Take x, y ∈ R, y is said to be an associate of x iff y = ux for some
unit u, which is equivalent to ⟨x⟩ = ⟨y⟩.

Definition 8.18. An element π = a + bω ∈ Z[ω] is said to be primary iff a ≡ −1
(mod 3) and b ≡ 0 (mod 3).

We record here an observation

Lemma 8.19. Let π ̸=0 = a+ bω ∈ Z[ω]. Then x has exactly six associates given by

a+ bω, −a− bω, −b+ (a− b)ω, b+ (b− a)ω, (b− a)− aω, (a− b) + aω.

If π is prime not dividing 3, then exactly one of the six associates is primary.

Proof. If π = a+ bω with (a, b) = (−1, 0) (mod 3), then

(−a,−b) ≡ (1, 0) (−b, a− b) ≡ (0,−1) (b, b− a) ≡ (0, 1)

(b− a,−a) ≡ (1, 1) (a− b, a) ≡ (−1,−1) (mod 3)

So it suffices to show that (a, b) takes one of the forms (±1, 0), (0,±1),±(1, 1) if π ∤ 3.
If π ∈ Z, then b = 0 and this is true. Otherwise p := a2 − ab + b2 is a prime number
different from 3. If (a, b) = ±(1,−1) or (0, 0), then p ≡ 0 (mod 3), contradiction. So we
are done. □

9. Cubic reciprocity law

We will present a cubic reciprocity law in this section. Whereas many ideas are bor-
rowed from the quadratic case, the arithmetic of Z[ω] is used in an essential way.

9.1. Motivation. Let p, q be two different prime numbers, when does

x3 ≡ q (mod p)

has a solution?
Well, equivalently, we are asking whether [x]p lies in (Z/pZ)×3

. Note that (Z/pZ)× is
a cyclic group of order p− 1.

9.1.1. Trivial case: p ≡ 2 (mod 3). In this case, the order of Z/pZ× is coprime to 3.
Hence

x 7→ x3 (mod p)

induces an automorphism Z/pZ× ∼= Z/pZ×. The conclusion is

x3 ≡ n (mod p) has exactly one solution for every integer n.

9.1.2. Nontrivial case: p ≡ 1 (mod 3). In this case, exactly one thirds of U(Z/pZ) has a
cubic root modulo p.

Question 9.1. Fix q, let p ≡ 1 (mod 3) vary. Is it true that

whether 3
√
q exists modulo p depends on the congruence class of p modulo q?

It turns out that the answer is surprisingly NO! There is a theorem in algebraic number
theory implying that7

Theorem 9.2. Let M ∈ Z+ and a ∈ Z with a ≡ 1 (mod 3) and gcd(a,M) = 1. Consider
the set of primes Pa,M := { p ≡ 1 (mod 3), p ≡ a (mod M)}. Then

# {p ∈ Pa,m | 3
√
q exists mod p} = # {p ∈ Pa,m | 3

√
q does not exist mod p} = +∞.

7We are not going to prove this.
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9.2. Mimicking the quadratic case. Let us recall some elements from the quadratic
case

(1) there is a Legendre symbol

(
q

p

)
∈ {±1} recording whether

√
q (mod p) exists

or not;

(2) there is certain law relating the value

(
q

p

)
to

(
p

q

)
;

(3) in the process of establishing this law, we found an expression for
√
±q using

“Gauss sum” gq :=
∑
a∈Z/qZ

(
a

q

)
ζaq where ζq := e

2πi
q .

9.3. Cubic residue character. Since Z/pZ has order p− 1, for any integer n coprime

to p, n
p−1
3 is a cubic root of unity modulo p. Thus we would like to say that n

p−1
3 is one

of {1, ζ3, ζ23} modulo p. But wait, what does this mean? How to put ζ3 inside Z/pZ?
One could just consider8 ω modulo pZ[ω], namely [ω]p ∈ Z[ω]/pZ[ω]. It has been shown

that Z/pZ ↪→ Z[ω]/pZ[ω] before. So we would be happy if [ω]p just happens to lie in the
image of Z/pZ, which is, of course, not true.

Luckily we have learned the arithmetic of Z[ω], so we know how to remedy this9.
Indeed, by Theorem 1.14? from last lecture, p ≡ 1 (mod 3) =⇒ p = πp · πp for some
prime element πp ∈ Z[ω]. Moreover, the natural map Z→ Z[ω] induces an isomorphism
Z/pZ ∼= Z[ω]/πpZ[ω]. So the analogue of Legendre symbol can be defined.

Although we initially care only about n ∈ Z coprime to p, it readily generalizes to all
x ∈ Z[ω] that is coprime to πp:

Lemma 9.3. Let p ≡ 1 (mod 3) be a prime number in Z, which factorizes as p = πp · πp
for some πp ∈ Z[ω]. Then for any integer x ∈ Z[ω] that is coprime to πp, there exists a

unique number in {1, ω, ω2}, denoted as

(
x

πp

)
3

, such that

x
p−1
3 ≡

(
x

πp

)
3

(mod πpZ[ω]).

Proof. It remains to show that the images of {1, ω, ω2} in Z[ω]/πpZ[ω] are different from
each other. Indeed, Nm

(
1− ω2

)
= Nm(1− ω) = Nm

(
ω − ω2

)
= 3 is corpime to p and

hence 1− ω2, 1− ω and ω − ω2 are coprime to πp. □

Remark 9.4. Let us note that

x3 ≡ q (mod p) has a solution ⇐⇒
(
q

πp

)
3

= 1.

Remark 9.5. Given p, one does not have a preference of πp over πp, so let us note that(
x

πp

)
3

=

(
x

πp

)
3

.

Thus for an integer n, (
n

πp

)
3

= 1 ⇐⇒
(
n

πp

)
3

= 1

Remark 9.6. We often view x 7→
(
x

πp

)
3

as a character (Z[ω]/πpZ[ω])× → {1, ω, ω2}.

This character is clearly surjective.

9.4. Gauss sums.

Definition 9.7. Let q be a prime number satisfying q ≡ 1 (mod 3). For a character
χ : (Z/qZ)× → {1, ω, ω2} (we shall refer such things as q-cubic characters), we define
the Gauss sum

gq(χ) :=
∑

a∈Z/qZ

χ(a)ζaq ∈ Z[ζ3q] = Z[ω, ζq]

where χ([0]q) := 0 for convenience.

Inspired by the quadratic case, one naturally wonders what gq(χ)
3 is.

8From this point on, we set ω := ζ3 to distinguish it from other ζp or ζq ’s.
9We want to emphasize that even if one only cares whether this quantity is one or not and the related

reciprocity law, whose statement does not require this higher arithmetic, it is still essential to distinguish

ω or ω2 to take advantage of the group structure. This will be used in the proof of reciprocity law.
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Definition 9.8. Let q, χ be as in last definition. Let

Jq(χ) :=
∑

a+b=1, a,b∈Z/qZ

χ(a)χ(b) ∈ Z[ω]

called a Jacobi sum.

Lemma 9.9. Let q be a prime number satisfying q ≡ 1 (mod 3). Let χ be a nontrivial
q-cubic character. Then

gq(χ)
2 = gq(χ

2) · Jq(χ)

Proof.

gq(χ)
2 =

∑
a∈Z/qZ

χ(a)ζaq ·
∑

b∈Z/qZ

χ(b)ζbq

=
∑

a,b∈Z/qZ

χ(ab)ζa+bq

=
∑

c∈(Z/qZ)×
ζcq

∑
b∈(Z/qZ)×

χ((c− b)b) +
∑

b∈Z/qZ

χ(−b2)

=
∑

c∈(Z/qZ)×
ζcq · χ(c)2 ·

∑
b∈(Z/qZ)×

χ(b− b2)

= gq(χ
2) · Jq(χ).

□

Lemma 9.10. Let q, χ be as in last lemma. Then

gq(χ)gq(χ
2) = q.

Proof. χ being a cubic character implies that χ2 = χ−1.

gq(χ)gq(χ
2) =

∑
a∈Z/qZ

χ(a)ζaq ·
∑

b∈Z/qZ

χ(b−1)ζbq

=
∑

a,b∈Z/qZ

χ(ab−1)ζa+bq

=
∑

c∈(Z/qZ)×
ζcq

∑
b∈(Z/qZ)×

χ((c− b)b−1) +
∑

b∈(Z/qZ)×
χ(−1)

=
∑

c∈(Z/qZ)×
ζcq

∑
b′∈Z/qZ\{[−1]}

χ(b′) + (q − 1)

=
∑

c∈(Z/qZ)×
−ζcq + (q − 1) = q

□

Corollary 9.11. Let q, χ be as above. Then

gq(χ)
3 = Jq(χ) · q.

Corollary 9.12. Let q, χ be as above. Then

gq(χ) · gq(χ) = Jq(χ) · Jq(χ) = q.

9.5. Interacting two different primes. By the corollary above q
p−1
3 Jq(χ)

p−1
3 = gq(χ)

p−1.
And we are led to compute the p-th power of gq(χ) modulo p (or more precisely, modulo
pZ[ζ3q]).

Lemma 9.13. Let q be a prime number with q ≡ 1 (mod 3) and χ be a q-cubic character.
Let p ̸= q be another prime number also satisfying p ≡ 1 (mod 3). Then

gq(χ)
p ≡ gq(χ) · χ2([p]q) (mod pZ[ζ3q])

Proof. Note that p ≡ 1 (mod 3) implies that χp = χ.

gq(χ)
p =

( ∑
a∈Z/qZ

χ(a)ζaq

)p
≡

∑
a∈Z/qZ

χ(a)ζapq (mod p)

≡
∑

b∈Z/qZ

χ(b · [p−1]q)ζ
b
q ≡ gq(χ) · χ2([p]q) (mod p)

□
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Combining results from last subsection, we get

Lemma 9.14. Let p, q, χ be as in last lemma. Then

Jq(χ)
p−1
3 q

p−1
3 ≡ χ2([p]q) (mod p).

Proof.

gq(χ) · Jq(χ)
p−1
3 q

p−1
3 = (gq(χ))

p ≡ gq(χ) · χ2([p]q) (mod p)

=⇒ qJq(χ)
p−1
3 q

p−1
3 ≡ qχ2([p]q) (mod p)

=⇒ Jq(χ)
p−1
3 q

p−1
3 ≡ χ2([p]q) (mod p).

where we used gq(χ) · gq(χ) = q from Corollary 9.12. □

9.6. Primes above q as a Jacobi sum. Take a prime number q ≡ 1 (mod 3) and
factorize q = πqπq. To kill the ambiguity, we require πq to be primary, that is, πq ≡ −1
(mod 3). With this condition, at least the set {πq, πq} is uniquely determined from q.

Specialize to the q-cubic character χπq
(−) :=

(
−
πq

)
3

. By Corollary 9.12 above,

Jq(χπq
) · Jq(χπq

) = q.

We further have

Lemma 9.15. Notation as above, Jq(χπq
) ≡ −1 (mod 3).

Proof. By Corollary 9.11,

q · Jq(χπq ) =
(∑

χπq (a)ζ
a
q

)3
≡
∑

χ3
πq
(a)ζ3aq (mod 3)

≡
∑
a ̸=0

ζ3aq ≡ −1 (mod 3)

Since q ≡ 1 (mod 3), the above implies

Jq(χπq ) ≡ −1 (mod 3).

□

Remark 9.16. If one use the original definition of Jq(χπq ), then by taking third power

one can show Jq(χπq
)3 ≡ −1 (mod 3). But this is insufficient to conclude that Jq(χπq

)
itself satisfies this congruence condition.

Therefore Jq(χπq ) ∈ {πq, πq}. We claim that

Lemma 9.17. Notation as above, Jq(χπq
) = πq.

Proof. By the definition of χπq

Jq(χπq
) ≡

∑
a∈Z/qZ

a
q−1
3 (1− a)

q−1
3 ≡

∑
a∈Z/qZ

∑
0≤l≤2(q−1)/3

λla
l (mod πq)

for some λl ∈ Z. We show the latter summation over a vanishes for each l.
For l < q − 1, there exists x0 ∈ (Z/qZ)× such that xl0 ̸= [1]q:∑

a∈Z/qZ

al =
∑

a∈Z/qZ

(x0a)
l = xl0

∑
a∈Z/qZ

al =⇒
∑

a∈Z/qZ

al = 0.

So we are done. □

9.7. Cubic reciprocity law, I. It’s time to state and prove (a case of) cubic reciprocity.

Theorem 9.18. Let p ̸= q be two distinct prime numbers satisfying p ≡ q ≡ 1 (mod 3).
Let πp (resp. πq) be a primary prime that lies above p (resp. q). Then(

πp
πq

)
3

=

(
πq
πp

)
3

.
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Proof. By Lemma 9.14 and 9.17,

q
p−1
3 π

p−1
3

q ≡
(
qJq(χπq

)
) p−1

3 ≡ χπq
([p]q)

2 (mod pZ[ω])

Therefore(
πq
πp

)2

3

(
πq
πp

)
3

≡
(
πp
πq

)2

3

(
πp
πq

)2

3

(mod πpZ[ω]) =⇒
(
πq
πp

)2

3

(
πq
πp

)
3

=

(
πp
πq

)2

3

(
πp
πq

)2

3

.

Swapping the role of πq, πp, one obtains(
πq
πp

)2

3

(
πq
πp

)2

3

=

(
πp
πq

)2

3

(
πp
πq

)
3

Multiplying them together, we get (
πq
πp

)
3

=

(
πp
πq

)
3

.

□

9.8. Cubic reciprocity law, II.

Theorem 9.19. Let p, q be two different primes satisfying p ≡ 2 (mod 3) and q ≡ 1
(mod 3). Let πq be a primary prime lying over q, then(

p

πq

)
3

=

(
πq
p

)
3

.

where

(
πq
p

)
3

is defined to be the unique number in {1, ω, ω2} satisfying

π
p2−1

3
q ≡

(
πq
p

)
3

(mod p)

Proof. The proof is similar to Theorem 9.18.

gq(χπq
)p

2

≡
∑

a∈Z/qZ

χπq
(a)ζap

2

q ≡ χπq
([p]−2

q ) · gq(χπq
) ≡ χπq

([p]q)gq(χπq
) (mod pZ[ζ3q])

Since gq(χπq
) · gq(χπq

) = q, we have gq(χπq
) is invertible modulo p and hence can be

eliminated from both sides:

q
p2−1

3 π
p2−1

3
q ≡ χπq ([p]q) (mod p) =⇒

(
πq
p

)
3

≡
(
p

πq

)
3

(mod p)

as

(
q

p

)
3

= 1. This completes the proof. □

9.9. Primes of the form x2 + 27y2. We return to the question raised in the beginning
in two special cases.

Lemma 9.20. Let p be a prime number.

p ≡ 1 (mod 3) ⇐⇒ 4p = x2 + 27y2 ∃ x, y ∈ Z.

Proof. By reduction theory, a set of representatives of Cl(−4 · 27) is

x2 + 27y2, 4x2 − 2xy + 7y2, 4x2 + 2xy + 7y2.

Then one applies the theory of composition. □

Notation 9.21. Whenever p is a prime with p ≡ 1 (mod 3), we will let xp, yp ∈ Z be
such that

4p = x2p+27y2p = (xp+yp ·3
√
−3)(xp−yp ·3

√
−3) = ((xp+3yp)+6yp ·ω)((xp−3yp)−6yp ·ω).

And we will write

πp :=
xp + 3yp

2
+ 3yp · ω ∈ Z[ω].

Note that xp ≡ yp (mod 2).

Theorem 9.22. Let p be a prime number, we have

p = x2 + 27y2 ∃ x, y ∈ Z ⇐⇒ p ≡ 1 (mod 3), x3 ≡ 2 (mod p) has a solution.



41

Proof of =⇒ . One finds quickly that p ≡ 1 (mod 3) from p = x2 + 27y2. Then πp :=

x+ 3
√
−3y = (x+ 3y) + 6y · ω is a prime above p. Replacing x, y by −x, y if necessary,

assume that πp is primary.

It remains to show that

(
2

πp

)
3

= 1. By reciprocity law,(
2

πp

)
3

=
(πp
2

)
3
=

(
x+ 3y + 6ω

2

)
3

=

(
x+ y

2

)
3

=

(
1

2

)
3

= 1.

In the last step we used the fact that x ≡ y (mod 2). □

Proof of ⇐=. By assumption

(
2

πp

)
3

= 1. By reciprocity law,

1 =
(πp
2

)
3
=

(
xp+3yp

2 + 3yp · ω
2

)
3

The only element in Z[ω]/2Z[ω] that is a cube is 1 (mod 2). So we must have

3yp ≡ 0 (mod 2)

Implying xp ≡ yp ≡ 0 (mod 2), so p =
(xp

2

)2
+ 27

(yp
2

)2
with xp/2, yp/2 ∈ Z. □

9.10. Supplementary laws. Although we will not prove it10, we state the supplemen-
tary law to the above cubic reciprocity laws.

Theorem 9.23. Assume p ≡ 1 mod 3 and πp is primary, written as (3m−1)+(3n) ·ω.
Then (

1− ω
πp

)
3

= ω2m,

(
3

πp

)
3

= ω2n.

Likewise, if a prime number p ≡ 2 (mod 3) is written as p = 3m− 1, then

(
1− ω
πp

)
3

=

ω2m.

Using this, let us prove a statement about cubic root of 3 modulo p, also conjectured
by Euler.

Theorem 9.24. Let p ≡ 1 (mod 3) and write 4p2 = x2p+27y2p for some xp, yp ∈ Z. Then

x3 ≡ 3 (mod p) has a solution ⇐⇒ yp ≡ 0 (mod 3).

Proof. Indeed

x3 ≡ 3 (mod p) has a solution ⇐⇒
(

3

πp

)
3

= 1

Since πp =
xp+3yp

2 + 3yp · ω, we have, by the supplementary law,(
3

πp

)
3

= ω2yp

which is equal to one iff yp ≡ 0 (mod 3). This completes the proof. □

In principle, equipped with Theorem 9.18, 9.19 and 9.23, one should be able to calculate
any cubic symbol just as we did before in the quadratic case. Here is one example

Example 9.25. x3 ≡ 15 (mod 19) has no solution.

Proof. We first find by hand that

4 · 19 = 76 = 72 + 27 · 12.
Thus π19 can be taken to be 5 + 3ω (or its conjugate, does not matter). It remains to

calculate

(
15

π19

)
3

using Theorem 9.18, 9.19 and 9.23.(
15

π19

)
3

=

(
3

π19

)
3

·
(

5

π19

)
3

= ω2·1 ·
(
5 + 3ω

5

)
3

= ω2 ·
(ω
5

)
3

= ω2 · ω
52−1

3 = ω.

10See Ireland, Rosen’s book, Chapter 9, Exercises 24-26. It is interesting to note that the proof makes

use of the above already established cubic laws.
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□

10. Arithmetic of imaginary quadratic fields

10.1. Notation. Throughout this lecture, n ̸= 1 is a positive square-free integer and
K := Q(

√
−n) is a degree 2 field extension of Q. This extension is sometimes called

imaginary quadratic extension.
There are two useful maps that shall be used repeatedly. For α = a+ b

√
−n, let

Nm (α) := α · α = a2 + nb2, Tr (α) := α+ α = 2a.

For an algebraic number α, its Q-minimal polynomial is the unique smallest degree
monic polynomial fα ∈ Q[X] such that fα(α) = 0. And α is an algebraic integer iff
fα ∈ Z[X]. Moreover, if α /∈ Q, then

fα(x) = x2 − Tr (α)x+Nm(x) .

So α ∈ K \Q is an algebraic integer iff Tr (α) ,Nm(α) ∈ Z.
Also for x1, ..., xl ∈ K, we let ⟨x1, ..., xl⟩ be the OK-submodule of K generated by

them and [x1, ..., xl] be the Z-submodule generated by them.

10.2. Ring of integers. Algebraic integers of imaginary quadratic extension can be
described explicitly

Lemma 10.1. Let

OK :=

Z[
√
−n] n ̸≡ 3 (mod 4)

Z
[
1 +
√
−n

2

]
n ≡ 3 (mod 4)

.

Then OK is the set of algebraic integers in K.

Proof. Write α = a+ b
√
−n ∈ K = Q[

√
−n]. So

α is an algebraic integer ⇐⇒ 2a, a2 + nb2 ∈ Z.
This implies that

Z · 1 + Z ·
√
−n ⊂ OK ⊂ Z · 1

2
+ Z ·

√
−n
2

.

In particular, elements inOK are algebraic integers. Since Tr
(

1+
√
−n

2

)
= 1 and Nm

(
1+

√
−n

2

)
=

1+n
4 , we find that OK belongs to algebraic integers if n ≡ 3 (mod 4).

Next we show that if α /∈ Z[
√
−n] is an algebraic integer, then n ≡ 3 (mod 4).

In this case, a = 1
2 +m for some m ∈ Z. Thus

a2 + nb2 =
1

4
+m+m2 + nb2 ∈ Z, which implies

1

4
+ nb2 ∈ Z.

This forces b /∈ Z and b = 1
2 + l for some l ∈ Z.

1

4
+ nb2 =

1 + n

4
+ nl + nl2 ∈ Z =⇒ n ≡ 3 (mod 4).

The proof is now complete. □

There is one reason why we prefer OK over Z[
√
−n] when n ≡ 3 (mod 4). It will be

shown that the ring OK has the unique factorization property for ideals whereas Z[
√
−n]

may not.

10.3. Ideals associated to quadratic forms.

Condition 10.1. From now on till the end of this lecture, n ̸≡ 3 (mod 4).

Notation 10.2. Let dK := −4n. For a quadratic form Q = ax2 + 2bxy + cy2 ∈ M+
−4n,

let IQ := Z · a+ Z · (−b+
√
−n) = [a,−b+

√
−n].

Lemma 10.3. For every Q ∈M+
−4n, IQ is an ideal of OK .

Proof. Since IQ is contained in OK , it is sufficient to show that IQ is an OK-module. As
it is already an Z-module, one only needs to check

√
−n · IQ ⊂ IQ:

√
−n · a = b · a+ a · (−b+

√
−n)

√
−n · (−b+

√
−n) = −b

√
−n− n = −b

√
−n+ b2 − ac = −c · a+ (−b) · (−b+

√
−n).

So we are done. □

Next we work towards a converse statement.
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10.4. Quadratic forms associated to imaginary quadratic numbers.

Definition 10.4. For an algebraic number α̸=0, its Z-minimal polynomial is the unique
f ∈ Z[X] with positive leading coefficient such that gcd(coeff(f)) = 1.

Lemma 10.5. For τ ∈ K with Im (τ) > 0, let fτ be its Z-minimal polynomial. Then
fτ (x) = ax2 + 2bx+ c for some a, b, c ∈ Z.

Proof. Write fτ (x) = Ax2 + Bx + C with A,B,C ∈ Z. We must show B is an even
number. If not, B2 − 4AC ≡ 1 (mod 4).√

B2 − 4AC ∈ OK =⇒
√
B2 − 4AC = y ·

√
−n, ∃ y ∈ Z

=⇒ B2 − 4AC ≡ y2 · (−n) ≡ 1 (mod 4).

But y2 ̸≡ 0 (mod 4), so y2 ≡ 1 (mod 4). Thus −n ≡ 1 (mod 4), a contradiction. □

Notation 10.6. For every τ ∈ K with Im (τ) > 0, we let (aτ , bτ , cτ ) ∈ Z3 be the unique

set of integers such that gcd(aτ , 2bτ , cτ ) = 1, aτ > 0 and τ =
−bτ +

√
bτ2 − aτ cτ
aτ

. Also

let Qτ (x, y) := aτx
2 + 2bτxy + cτy

2 be the unique (primitive) quadratic form associated
to τ .

Lemma 10.7. Take τ ∈ K with Im (τ) > 0. Then

[1, τ ] ∈ OK−mod ⇐⇒ b2τ − aτ cτ = −n.

Proof of =⇒. For simplicity write a, b, c for aτ , bτ , cτ . Also, τ = x + y
√
−n for some

x, y ∈ Q.
Find λ1, ..., λ4 ∈ Z such that

√
−n · 1 = λ1 + λ2τ = (λ1 + λ2x) + yλ2 ·

√
−n

−ny + x ·
√
−n =

√
−n · τ = λ3 + λ4τ = (λ3 + λ4x) + yλ4 ·

√
−n.

(27)

By comparing coefficients, we get

y =
1

λ2
, x = −λ1

λ2
, λ4 =

x

y
= −λ1, λ3 =

−n− λ21
λ2

.

Thus,
2b

a
= −Tr (τ) = −2x =

2λ1
λ2

c

a
= Nm(τ) = x2 + ny2 =

λ21
λ22

+ n
1

λ22
=
n+ λ21
λ2

· 1

λ2
=
−λ3
λ2

.

Since λ21 + λ2λ3 = −n and n is square-free, we have gcd(λ2, 2λ1, λ3) = 1, from which it
follows that

(a, b, c) = ±(λ2, λ1, λ3).
Consequently b2 − ac = −n, as desired. □

Proof of ⇐=. It suffices to set λ1 := bτ , λ2 := aτ , λ3 = −cτ and λ4 := −bτ and verify
Equa.(27) is true. □

10.5. Ideals.

Lemma 10.8. Every nonzero proper ideal I ◁OK is a rank-2 free Z-module.

Proof. Take α ̸=0 ∈ I, then

Z ·Nm(α) + Z ·Nm(α)
√
−n ⊂ I ⊂ Z · 1 + Z ·

√
−n

is in between two rank 2 free Z-modules. Thus it also has to be so. □

Lemma 10.9. Every nonzero proper ideal I ◁OK takes the form I =
α

aτ
· IQτ

for some

α ∈ I, τ ∈ K, Im (τ) > 0. Moreover, I · I = ⟨Nm(α)

aτ
⟩ with Nm(α) /aτ ∈ Z+.

Proof. By last lemma, I ◁OK can be presented as [α, β] and we may assume Im (β/α) > 0.
Let τ := α/β. Thus

[α, β] = α · [1, τ ] = α · [1, bτ +
√
−n

aτ
] =

α

aτ
· IQτ

.
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The rest of the claim follows from

IQτ · IQτ = [a,−b+
√
−n] · [a,−b−

√
−n]

= [a2, a(b+
√
−n), a · (2b), b2 + n = ac] = ⟨a⟩.

□

10.6. Cancellation law and quotients of ideals: Corollary to Lemma 10.9. We
draw a few important corollaries from the fact that each nonzero proper ideal I admits
another I ′ such that I · I ′ is a principal ideal. The arguments here work word-by-word
for general number fields (of course I · I ′ being principal requires a different proof).

Corollary 10.10. Let I, J, a be nonzero ideals of OK . Then

I · a = J · a =⇒ I = J.

Proof. Find a′ ◁OK , α ∈ OK such that aa′ = ⟨α⟩. So
I · a = J · a =⇒ I · ⟨α⟩ = J · ⟨α⟩ =⇒ I = J.

□

Corollary 10.11. Let I, J be two nonzero ideals of OK with I ⊂ J . Then there exists
a ◁OK such that I = J · a.
Proof. Find J ◁OK , α ∈ R such that J · J ′ = ⟨α⟩. Thus,

I · J ′ ⊂ J · J ′ = ⟨α⟩.

This shows that a :=
I · J ′

α
is an ideal in OK . Consequently,

I · J ′ = ⟨α⟩ · a = J · J ′ · a =⇒ I = J · a
by Corollary 10.11.

□

Theorem 10.12. Every proper nonzero ideal in OK can be uniquely written as a product
of finitely many prime ideals.

10.7. Proof of factorization into prime ideals: Theorem 10.12. First we treat
the existence part.

Assume the conclusion were wrong, find some nonzero proper ideal I ◁ OK such that
I is maximal among those that can not be written as a product of prime ideals.

Find some maximal (and hence prime) ideal p containing I, by Corollary 10.11, I = p·J
for some J ◁OK . Then I is strictly contained in J , implying that J can be written as a
product of prime ideals. But then I = p·J is also a product of prime ideals. Contradiction.

Next we prove the uniqueness.
Say

I = p1 · ... · pn = q1 · ... · qk
is a product of prime ideals.

Since q1 · ... · qk ⊂ p1, we have p1 = qi for some i. Up to permutation, p1 = q1. By the
cancellation law we have

p2 · ... · pn = q2 · ... · qk.
Repeating the above process we will obtain k = n and pi = qi after some permutation.

10.8. Splitting pattern of prime numbers in OK .

Theorem 10.13. Let p ∈ Z+ be a prime number. Then

pOK =


p2 for some prime p ◁OK , p = p if p | −4n

remains prime if p ∤ −4n,
(
−n
p

)
̸= 1

p · p for some prime p ◁OK , p ̸= p if p ∤ −4n,
(
−n
p

)
= 1

Conversely, let p◁OK be a nonzero proper prime ideal. Then p∩Z = p.Z for some prime
number p. Moreover,

pOK =


p2 if p | −4n

p if p ∤ −4n,
(
−n
p

)
̸= 1

p · p if p ∤ −4n,
(
−n
p

)
= 1
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Only the first part will be provided with a formal proof. Given this, the proof of the
second part is not hard and is left to the reader.

Before the proof, let us note that

Lemma 10.14. Let p be a prime number. Then the prime factorization of pOk has only
two possibilities

pOk =

{
p p · p = ⟨p2⟩
p · p otherwise

Of course it is possible p = p.

Proof. Let p be a proper prime ideal containing pOK . Then ⟨p⟩ = p · I for some other
ideal I. By Lemma 10.9, p · p = m for some integer m ∈ Z+. Thus

⟨p2⟩ = m · (J · J) =⇒ m | p2 =⇒ m = p or p2.

If m = p, then we are in the case pOK = p · p. If m = p2, then pOk = p. □

10.9. Proof of Theorem 10.13: ramified case. First we assume p | n.
Decompose

⟨
√
−n⟩ = p1 · ... · pl

Then

⟨n⟩ = p21 · ... · p2l = (p1 · p1) · ... · (pl · pl).
Without loss of generality assume p ∈ p1. By Lemma 10.14, p1 · p1 = ⟨p⟩ or ⟨p2⟩. But n
is squarefree, so the latter case is excluded. So we have pOK = p1 · p1. If p1 ̸= p1, say
p1 = p2. Then

⟨n⟩ ⊂ (p1 · p1)2

a contradiction against the assumption that n is squarefree.
The proof is already complete if n is even. Now assume n is odd, that is n ≡ 1 (mod 4).

We need to show 2OK = p2. Let p := [2, 1 +
√
−n]. Then

√
−n(1 +

√
−n) = (1 +

√
−n)− (1 + n) ∈ p =⇒ p ∈ OK−mod.

Furthermore,

p = [2, 1−
√
−n] = [2,−1−

√
−n] = p

p2 = [4, 1 + n, 2(1−
√
−n), 2(1 +

√
−n)] = ⟨2⟩

since 1 + n ≡ 2 (mod 4). Note that p is certainly a prime.

10.10. Proof of Theorem 10.13: unramified cases. So assume p ∤ −4n now.

First we further assume

(
−n
p

)
= 1. Then p ∈ Rep(Q) for some Q ∈ M+

−4n. Up to

proper equivalence, we assume Q takes the form px2+2bxy+cy2. Therefore IQ is a prime
ideal and

IQ · IQ = [p2,−bp+ p
√
−n, 2bp, pc] = ⟨p⟩.

It remains to show IQ ̸= IQ. Otherwise

[p,−b+
√
−n] = [p,−b−

√
−n]

=⇒ b+
√
−n = A · p+B(−b+

√
−n) = (Ap−Bb) +B

√
−n, ∃A,B ∈ Z

=⇒ B = 1, b = Ap− b =⇒ 2b = Ap =⇒ p | 2b.

But −4n = (2b)2 − 4pc, so p | −4n. This is a contradiction.

Finally we assume pOK is not a prime and show

(
−n
p

)
= 1.

By Lemma 10.14, pOK = p ·p for some prime ideal p. By Lemma 10.9, p ·p = ⟨Nm(α)

a
⟩

for some α ∈ OK and a ∈ Z+. Hence

p | Nm(α) = x2 + ny2 ∃x, y ∈ Z.

This shows

(
−n
p

)
= 1.
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10.11. Class groups.

Definition 10.15. We define the class group of OK :

Cl(OK) := { Ideals of OK} /{ principal ideals } equipped with [I] · [J ] := [I · J ]

That this semigroup is indeed a group follows from Lemma 10.9.

Note that the map

ax2 + 2bxy + cy2 7→ [a,−b+
√
−n]

from M+
−4n to ideals of OK induces a map from Cl(−4n) to OK (recall n ̸≡ 3 (mod 4)

and OK = Z[
√
−n]). We have shown (Lemma 10.9) that this is a surjection.

Lemma 10.16. This map is an injection.

Proof. Say the ideals corresponding to Q = ax2+2bxy+ cy2 and Q′ = a′x2+2b′xy+ c′y2

fromM+
−4n are the same modulo principal ideals. That is,

[1 : τ ] = γ · [1 : τ ′], ∃ γ ∈ K

where τ = −b+
√
−n

a , τ ′ = −b′+
√
−n

a′ . Therefore, there exists

(
p q
r s

)
∈ GL2(Z) such that(

1
τ

)
= γ ·

(
p q
r s

)(
1
τ ′

)
=⇒ τ =

r + sτ ′

p+ qτ ′
.

Since Im (τ) , Im (τ ′) > 0, we have

(
p q
r s

)
∈ SL2(Z).

The above also implies that(
τ ′ 1

)(s p
r q

)(
a b
b c

)(
s p
r q

)tr(
τ ′

1

)
= λ(aτ2 + 2bτ + c) = 0

where λ is some constant. As Q′ is uniquely determined by τ ′, we have(
s p
r q

)(
a b
b c

)(
s p
r q

)tr

=

(
a′ b′

b′ c′

)
.

In other words Q is properly equivalent to Q′. □

That “Q′ is uniquely determined by τ ′” can be more precisely stated as

Lemma 10.17. We have a bijection

{τ | Im (τ) > 0, [Q(τ) : Q] = 2} ←→
{
(a, b, c) ∈ Z3 | a, c > 0, gcd(a, b, c) = 1

}
τ 7−→ Z-minimal polynomial

the root with positive imaginary part ←− [ ax2 + bx+ c

Moreover, by restricting to suitable subsets, we get{
τ | ...[1, τ ] is a Z[

√
−n]−mod

}
←→

{
(a, b, c) ∈ Z3 | ...b2 − 4ac = −4n, b even

}
The proof is omitted.
Finally, we show

Theorem 10.18. The above map (a, 2b, c) 7→ [a,−b +
√
−n] induces an isomorphism

between the groups Cl(−4n) ∼= Cl(Z[
√
−n]) (n ̸≡ 3 (mod 4) as before).

Proof. It only remains to show that the map respects group structures.
Without loss of generality, we assume (Q,Q′ is Lagrange great (i.e., gcd(a, a′) = 1 and

b = b′). Thus

[Q] · [Q′] = [aa′x2 + 2bxy +
c′

a
y2]

On the other hand,

[a,−b+
√
−n] · [a′,−b+

√
−n] = [aa′, a(−b+

√
−n), a′(−b+

√
−n), b2 − n− 2b

√
−n]

Since gcd(a, a′) = 1, the above is equal to

[aa′,−b+
√
−n],

as desired. □
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So far we have a good understanding of how primes in Z “splits” in OK . However,
the understanding of class group of OK is less complete. Indeed, a prime p ∤ −4n is
represented as x+ny2 iff the prime “above” p is a principal ideal, but we have no criterion
to see when this is true. Class field theory relates (subgroups of) class groups to certain
field extension ofK. This connection will give us a criterion on when p splits into principal
prime ideals. Before getting to class field theory, the next lectures will review basic facts
about number fields.

11. Field extensions and Galois theory.

This is taken from the appendix of Marcus’ book.
We start with a few definitions/facts/notations.

• Given a field extension K ⊂ L, we let [L : K] denote the dimension of L as a
K-vector space. It is sometimes referred to as the degree of the field extension
L/K.

• A subfield L ⊂ C, which necessarily contains Q, is said to be a number field iff
[L : Q] is finite.

• A number α ∈ C is said to be an algebraic number iff the field generated by α,
denoted by Q(α), is a number field.

• Given an algebraic number α and a number field K, there exist a unique monic
irreducible polynomial f ∈ K[X], called the minimal polynomial, such that
f(α) = 0. Other roots of f are referred to as K-conjugates of α. It is not hard
to see that X 7→ α induces

φK,α : K[X]/⟨f⟩ ∼= K[α] = K(α).

• Given a number field K and f ∈ K[X] irreducible, all roots of f in C are distinct.
• Given two subfields K ⊂ L of C, we let Ebd(L/K) collect all embeddings of L

into C which become identity when restricted to K.

We start by noting that if α is an algebraic number, then K(α) is an extension of K
of finite degree. In general, every finitely generated field extension by algebraic numbers
has finite degree over Q.

11.1. Embeddings. First we show that “there are enough embeddings”.

Theorem 11.1. Given two number fields K ⊂ L ⊂ C. #Ebd(L/K) = [L : K].

We start by considering the case K(α)/K for some algebraic number α. Since each
σ ∈ Ebd(K(α)/K) is determined by the image of α, we obtain an injection:

Ebd(K(α)/K) ↪→ {K-conjugates of α}.
But this is also surjective. Let β be a K-conjugate of α, we define σβ by

K[α] K[X]/⟨fα⟩ K[β] C
φ−1

K,α φK,β inclusion

Now consider K(α1, α2) = K[α1, α2]/K. Let K1 := K(α1) and K2 := K1(α2) =
K(α1, α2).

Lemma 11.2. Every σ ∈ Ebd(K1/K) admits an extension to some σ′ ∈ Ebd(K2/K).

Proof. Let f2 be the minimal polynomial of α2 over K1. Note that f 7→ σ(f), by applying
σ to the coefficients, defines an isomorphism between rings (they are fields)

σX : K1[X]/⟨f2⟩ ∼= σ(K1)[X]/⟨σ(f2)⟩
Also fix another root β of σ(f2). The desired extension can be defined by

K2 K1[X]/⟨f2⟩ σ(K1)[X]/⟨σ(f2)⟩ K1(β) C.
φ−1

K1,α2 σX
φK1(β),β inclusion

□

Now fix such an extension σ′ for every σ. Sending θ 7→ θ ◦ σ′ defines an injection

Ebd(σ′(K2)/σ(K1)) ↪→ {φ ∈ Ebd(K2/K) | φ|K1
= σ} .

But this is also surjective by counting. LHS has [K2 : K1] many elements. Every φ on
the RHS is determined by φ(α2), hence has at most deg(f2) = [K2 : K1] many element.

Now let σ vary, RHS forms a disjoint union of Ebd(K2/K) showing that #Ebd(K2/K) =
[K2 : K].

The full proof can be completed by an inductive argument.
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11.2. Primitive element. Given a field extension L/K, an element α ∈ L is said to be
a primitive element iff L = K(α).

Theorem 11.3. If K ⊂ L are number fields, then primitive elements exists.

The proof is based on the last theorem. The essential case is when L = K(α, β) for
some α, β ∈ L. Applying this special case repeatedly yields the general case.

We show that except for finitely many t ∈ K, L = K(α+tβ). By Theorem 11.1 applied
to L/K(α+ tβ),

L ̸= K(α+ tβ) =⇒ σ(α+ tβ) = α+ tβ ∃ σ̸=id ∈ Ebd(L/K)

=⇒ σ(α)− α = −t · (σ(β)− β) ∃ σ ̸=id ∈ Ebd(L/K)

Note that σ ̸= id as above implies that σβ ̸= β for otherwise σα = α and hence σ = id.
Therefore L ̸= K(α+ tβ) implies that t belongs to the finite list{

− σ(α)− α
σ(β)− β)

∣∣∣∣ σ ̸=id ∈ Ebd(L/K)

}
.

This completes the proof.

11.3. Normal extension.

Theorem 11.4. Let L/K be a finite extension of number fields. We say that this exten-
sion is normal iff one of the following equivalent conditions is met

(1) σ(L) ⊂ L for all σ ∈ Ebd(L/K).
(2) for every α ∈ L, all K-conjugates of α live in L.

By Theorem 11.1, for every α, α′ ∈ L that areK-conjugate, there exists σ ∈ Ebd(L/K)
sending α to α′.

So if condition (1) holds, then all K-conjugates of α stays in L. Conversely, L =
K(α1, ..., αl) for finitely many αi’s. So condition (2) says that σ sends each αi into L,
implying σ(L) ⊂ L.

Remark 11.5. It follows from the definition that for finite field extensions K ⊂ F ⊂ L.
We have L/K normal implies L/F normal.

11.4. Normal closure.

Theorem 11.6. Given a finite extension L/K of number fields, there exists a finite
extension M/L such that M/K is normal.

The smallest M/L such that M/K is normal is called the normal closure of L/K.
Write L = K(α1, ..., αl). Let M be the field generated by K and all the K-conjugates

of all αi’s. Then M/K is normal be the last theorem.

Notation 11.7. When L/K is normal, we usually write Gal(L/K) for the automor-
phisms of L that fix K pointwise.

11.5. Galois correspondence.

Lemma 11.8. Assume L/K is normal. Then

(1) K = {x ∈ L | σ(x) = x, ∀σ ∈ Gal(L/K)};
(2) K ̸= {x ∈ L | σ(x) = x, ∀σ ∈ H} for H ⪇ Gal(L/K).

Proof of (1). The RHS is a field, call it K ′. If K ′ is strictly larger than K, then by
Theorem 11.1, there exists nontrivial field embeddings K ′/K, which extend to certain
σ ∈ Gal(L/K). Such a σ does not fix K ′ pointwise. A contradiction. □

Proof of (2). By primitive element theorem, L = K(α). Let f be the K-minimal poly-
nomial of α. So deg(f) = [L : K].

On the other hand, let

fH(x) :=
∏
σ∈H

(x− σ(α)).

Then fH , and hence the coefficients of fH , are fixed by H. But deg(fH) = |H| ⪇ [L : K],
so fH is not in K[X]. Therefore, one of the coefficients of fH is fixed by H but does not
belong to K. □
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Theorem 11.9. Assume L/K is a finite normal extension. For a subgroup H of Gal(L/K),
let LH := {x ∈ L | σ(x) = x, ∀ σ ∈ H}. Then we have the following bijection

{Intermediate fields K ⊂ F ⊂ L} ∼= {Subgroups of Gal(L/K)}
F −→ Gal(L/F )
LH ←− H

Starting with F , we must show F = LGal(L/F ), which is just Lemma 11.8.
Starting withH ≤ Gal(L/F ), we need to showH = Gal(L/LH). ThatH ⊂ Gal(L/LH)

is direct. If this were a strict inclusion, then LH ̸= LH by part (2) of Lemma 11.8 applied
to L/LH .

11.6. Composite of field extensions.

Theorem 11.10. Take a finite normal extension L/K and a finite extension E/K (not
necessarily normal). Let EL be the composite field of E and L, namely, the smallest
subfield of C containing E and L. Then

(1) the field extension EL/E is normal;
(2) the restriction map induces an injective homomorphism Gal(EL/E)→ Gal(L/K),

which is surjective iff E ∩ L = K.

EL

E L

K

Gal(EL/E)

Gal(L/K)

Proof of (1). Take σ ∈ Ebd(EL/E). Since σ fixes E and hence K, we have

σ|L ∈ Ebd(L/K) = Gal(L/K) =⇒ σ(L) ⊂ L =⇒ σ(EL) ⊂ EL.
□

Proof of (2). Take σ ∈ Gal(EL/E). Since σ fixes E, σ is trivial iff σ fixes L. This shows
the injectivity of the restriction map.

Note that

E ∩ L = K ⇐⇒ [EL : E] = [L : K] ⇐⇒ #Gal(EL/E) = #Gal(L/K).

Thus the injective homomorphism is surjective iff E ∩ L = K. □

11.7. Finite fields. The morphism x 7→ x#OK/p belongs to and generates Gal(Fq/Fp).

12. Number fields.

We give in this lecture a quick introduction to algebraic number theory.
Recall that number fields refer to finite field extensions of Q. A number x ∈ C is said

to be an algebraic number iff x is contained in some number field. For such a number
x and a number field K, the K-minimal polynomial is the unique monic polynomial
f ∈ K[X] of lowest degree such that f(x) = 0. The degree of x over K, by definition, is
the degree of f(x).

12.1. The ring of algebraic integers.

Lemma 12.1. An algebraic number α ∈ C is said to be an algebraic integer iff one of
the following equivalent conditions is met:

(1) the Q-minimal polynomial of α lies in Z[X];
(2) there exists a monic polynomial f ∈ Z[X] such that f(α) = 0.

Proof. This follows from Gauss’ lemma. Details are omitted. □

Notation 12.2. For a number field K, let OK collect all algebraic integers contained in
K.

Proposition 12.3. OK is a ring.

For the proof, it is useful to note

Lemma 12.4. Assume K is a number field and α ∈ K. Let Λ ⊂ K be a finitely generated
Z-submodule. If α preserves Λ, then α ∈ OK .
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Proof. Assume Λ is generated by x1, ..., xk for some xi ∈ K. Then there exists a k-by-k
matrix M with Z-coefficients such that

α · (x1, ..., xk) = (x1, ...., xk) ·M.

Note that this implies
(x1, ..., xk) · (αIk −M) = (0, ..., 0).

Thus αIk−M is not invertible (as a square matrix over K), which forces det(αIk−M) =
0 (otherwise Cramer’s rule gives the inverse). But f(x) := det(xIk − M) is a monic
polynomial in Z[X]. So α is an algebraic integer by Lemma 12.1. □

Proof of Proposition 12.3. Let α, β ∈ OK be given. Need to show that α+β, α ·β belongs
to OK . In light of Lemma 12.4, it suffices to find a finitely generated Z-submodule Λ of
K preserved by them. Assume α has degree l1 and β has degree l2 over Q.

Indeed, one may take Λ to be the Z-submodule spanned by {αiβj , i = 0, 1, ..., l1 −
1, j = 0, 1, ..., l2 − 1}.

□

12.2. OK as a Z-module.

Lemma 12.5. Let K be a number field of degree l over Q. Then OK is a free Z-module
of rank l.

For the proof, it is useful to make the following definition:

Definition 12.6. Given a number field K/Q of degree l and x1, ..., xl ∈ K that forms a
basis of K as a Q-vector space. Let Ebd(K/Q) := {σ1, ..., σl}. We define the discriminant
of this l-tuple by

disc(x1, ..., xl) := det (σi(xj))
2
.

Lemma 12.7. Notation as in last definition. disc(x1, ..., xl) ∈ Q.

Proof. If K/Q is normal, then this follows from Galois theory since it is fixed by every
element in Gal(K/Q).

If not, let L/Q be its normal closure. Then applying σGal(L/Q) amounts multiplying
by a permutation matrix. Hence disc(x1, ..., xl) is fixed by Gal(L/Q) and hence lives in
Q. □

Proof of Lemma 12.5. Take x ∈ OK of degree [L;K], which exists by primitive theorem.
Write dx := disc(1, x, x2, ..., xl−1) We are going to show that

OK ⊂
Z⊕ Zx⊕ Zx2 ⊕ ...⊕ Zxl−1

dx
. (28)

Since every submodule of a finite generated free Z-module is free, the proof is complete.
Take α ∈ OK , there exists λ0, ..., λl−1 ∈ Q such that

α = λ0 + λ1x+ ....+ λl−1x
l−1.

Applying Ebd(K/Q) we get

(σ1(α), ..., σl(α)) = (λ0, ..., λl−1) ·


1 1 · · · 1

σ1(x) σ2(x) · · · σl(x)
. . .

σ1(x
l−1) σ2(x

l−1) · · · σl(x
l−1)


By Cramer’s rule, the inverse of the matrix to the right has coefficients in

OK
dx

. This

implies that all λi’s lie in
OK
dx
∩Q =

Z
dx

and proves Equa.(28). □

12.3. Finiteness of residue ring.

Lemma 12.8. Let K be a number field and I ◁ OK be a proper nonzero ideal. Then
OK/I is finite and I ∼= Z⊕[L:K] as a Z-module.

Proof. Take α̸=0 ∈ I, then Nm(α) ∈ I ∩ Z is nonzero. This shows that

I ∩ Z = NZ ∃ N ∈ Z+.

which implies that NOK ⊂ I ⊂ OK . But both NOK and OK are free Z-modules of rank
[L : K]. Thus so is I. Since OK/NOK is finite, we have OK/I is finite. □

From this lemma we deduce that
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Corollary 12.9. Let K be a number field and p ◁OK be a nonzero prime ideal. Then p
is a maximal ideal.

Proof. Let x ∈ OK \ p, we must show 1 is contained in the ideal generated by x and p.
Since OK/p is finite, there exists m,n ∈ Z+ such that

xm ≡ xm+n (mod p), which implies 1 ≡ xn (mod p)

because p is prime. So we are done. □

12.4. Integrally closed.

Lemma 12.10. Let K be a number field. Then OK ⊂ K is integrally closed, that is
to say, for each monic polynomial f ∈ OK [X] and α ∈ K,

f(α) = 0 =⇒ α ∈ OK .

Proof. Take such a f and x. We need to show x ∈ OK , which holds if there exists a
finitely generated Z-module Λ in K that is preserved by x.

Write

f(x) = xn + λ1x
n−1 + ...+ λn

for some λi’s in OK . Let li := degQ(λi). Consider the Z-submodule Λ of OK generated
by {

λi11 · λ
i2
2 ...λ

in
n · αj | ik = 0, ..., lk − 1, j = 0, ..., n− 1

}
It can be directly checked that α preserves Λ and so α ∈ OK .

□

12.5. Dedekind domain.

Definition 12.11. Let R be a unital commutative ring. Assume R is an integral domain
(i.e., xy = 0 =⇒ x = 0 or y = 0). We say R is a Dedekind domain if

(1) every ideal of R is finitely generated;
(2) every proper nonzero prime ideal is maximal;
(3) R is integrally closed in its field of fraction K := Frac(R).

Our efforts so far have shown

Theorem 12.12. Let K be a number field, then OK is a Dedekind domain.

In the next few subsections we will show

Theorem 12.13. Let R be a Dedekind domain, then every proper nonzero ideal in R can
be uniquely written as products of prime ideals.

Remark 12.14. Axiomizing Dedekind domain this way is due to Noether.

12.6. Inverse of an ideal modulo principal ideals.

Theorem 12.15. Let R be a Dedekind domain and I ◁R be a nonzero proper ideal. Then
there exist J ◁ R and α ∈ R such that I · J = ⟨α⟩.

Definition 12.16. Let K be a number field. Then the set of nonzero ideals of OK forms
a semigroup under multiplication of ideals. If we say I ∼ J iff I = αJ for some α ∈
K×, and denote by Cl(OK) the set of equivalence classes together with the multiplication
[I] · [J ] := [I · J ]. By Theorem 12.15, Cl(OK) is a group, called the class group.

An important theorem, which we shall not prove, is

Theorem 12.17. Cl(OK) is finite.

Let us go back to Theorem 12.15. The crucial lemma behind the proof is

Lemma 12.18. R is a Dedekind domain11 with fraction field K and I is a nonzero proper
ideal of R. Then there exists x ∈ K \ OK such that xI ⊂ R.

Proof of Theorem 12.15 assuming Lemma 12.18. Fix α ̸=0 ∈ I and let J := {x ∈ R |
xI ⊂ ⟨α⟩}. By definition I · J ⊂ ⟨α⟩ and we wish to show the equality holds.

First we note that

I · J ⊂ ⟨α⟩ ⇐⇒ I · J
α
⊂ R.

11We do not need the integrally closed assumption.
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And if the first ⊂ is strict then so is the second. But then, by Lemma 12.18, we can find
γ ∈ K \R such that

γ · J · I
α

= γ · I · J
α
⊂ R.

Note that 1 ∈ I
α and so γJ ⊂ R. But γJ · I ⊂ ⟨α⟩ combined with the definition of J

implies that γJ ⊂ J . Now it is time to invoke Lemma 12.4 to conclude that γ is integral
over R and hence lies in R by the Dedekind property. This is a contradiction. □

12.7. Proof of Lemma 12.18. If I is principal, this is direct. In general, take α̸=0 ∈ I,

we certainly have 1
α · ⟨α⟩ ⊂ R. We wish to find suitable β ∈ R \ ⟨α⟩ such that

β

α
· I ⊂ R.

This x :=
β

α
then satisfies the conclusion.

To construct β, we make use of the following

Lemma 12.19. Let R be a Dedekind ring12 and I be a nonzero ideal of R. Then I
contains a product of prime ideals.

Proof. If I is already a prime ideal, there is nothing to prove. In general, let I be a
maximal element among those proper ideals that do not contain product of primes and
we shall seek for a contradiction.

Since I is not a prime ideal, there exist x, y ∈ R \ I such that x · y ∈ I. As I + ⟨x⟩
and I + ⟨y⟩ are both strictly larger than I, each of them must contain a product of prime
ideals. So their product

(I + ⟨x⟩) · (I + ⟨y⟩) = ⟨I2, xI, yI, xy⟩ ⊂ I

also contains a product of prime ideals. A contradiction. □

Now go back to the proof of 12.18. By Lemma 12.19, ⟨α⟩ contains a product of primes.
We let k be the smallest number such that ⟨α⟩ contains a product of k prime ideals:

I ⊃ ⟨α⟩ ⊃ p1 · ... · pk.

Let p be a prime ideal containing I, then p must contain (and hence be equal to) one of
pi’s. Otherwise, one takes xi ∈ pi \ p, then their products

∏
xi /∈ p but

∏
xi ∈ p1 · ... · pk,

a contradiction.
Wlog, assume p = p1. Take β ∈ p2 · .... · pk \ ⟨α⟩, which exists by the minimality of k.

Then βI ⊂ βp1 ⊂ ⟨α⟩, or equivalently,
β

α
· I ⊂ R. This completes the proof.

12.8. Proof of Theorem 12.13. Just as the case of imaginary quadratic fields, Theorem
12.13 follows from some corollary of Theorem 12.15. We only recall some statements but
omit the proof, which is the same.

Lemma 12.20. Let R be a Dedekind domain and I, J, a be nonzero ideals of R. Then

I · a = J · a =⇒ I = J.

Lemma 12.21. Let I, J be two nonzero ideals of R with I ⊂ J . Then there exists a ◁ R
such that I = J · a.

12.9. Extension of prime ideals. Next we study the behaviors of prime ideals under
field extensions. We will treat the special case of normal finite extensions.

Definition 12.22. Let L/K be a normal finite extension of number fields. A prime ideal
q of OL is said to lie over a prime ideal p of OK iff q ∩OK = p. Equivalently, q appears
in the prime decomposition of p · OL.

Lemma 12.23. Given a finite normal extension of number fields L/K. Let q, q′ be two
prime ideals of OL lying over some prime ideal p of OK . Then σ(q) = q′ for some
σ ∈ Gal(L/K).

Proof. Let

a :=
∏

σ∈Gal(L/K)/∼

σ(q), a′ :=
∏

σ∈Gal(L/K)/∼

σ(q′)

where Gal(L/K)/ ∼ is to indicate we modulo the stabilizer of the ideal being acted on.

12The integrally closed assumption will not be used.
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If the conclusion were wrong, then a would be coprime to a′ (i.e., the ideal generated
by them is the full ring). By CRT, we find x ∈ OL satisfying

x ≡ 0 (mod a) x ≡ 1 (mod a′).

Applying the Nm () map we find

Nm(x) ≡ 0 (mod a) Nm (x) ≡ 1 (mod a′).

But Nm(x) ∈ OK and OK ∩ a = OK ∩ a′ = p. So

Nm (x) ≡ 0 (mod p) Nm (x) ≡ 1 (mod p).

A contradiction. □

Notation 12.24. In light of the above lemma, there exist e, g ∈ Z+ and distinct prime
ideals q1, ...qg such that

pOL = qe1 · ... · qeg.
Also, there exists f ∈ Z+ such that f = [OL/qi : OK/p] for every i.

Theorem 12.25. Given a normal extension of number fields K ⊂ L and pOL = qe1 · ... ·qeg
as above. Then [L : K] = efg.

Proof. By CRT, we have

OL/pOL ∼= O/qeq ⊕ ...⊕O/qeg.
Then we claim that as OL-module, for any prime ideal q of OL,

OL/q ∼= q/q2 ∼= ... ∼= qk/qk+1...

We only prove the first isomorphism, the rest can be proved similarly. Take a ∈ q \ q2,
define

OL/q→ q/q2

x+ q 7→ ax+ q2

It is quite direct to show that this is an injective morphism. To show surjectivity, note
that

⟨a⟩+ q2 = q.

We conclude from above that

#OL/pOL = (#OK/p)efg.
On the other hand,

OL ⊃ OK .v1 ⊕ ...⊕OK .vk ⊕ finite

=⇒ pOL ⊃ p.v1 ⊕ ...⊕ p.vk ⊕ finite

=⇒ OL/pOL ∼‘up to finite part’ ⊕OK .vi/p.vi ∼= ⊕lOK/p
(29)

where l = [L;K]. This shows that

dimOK/pOL/pOL = [L : K] =⇒ #OL/pOL = (#OK/p)[L:K].

By comparing with the above computation we finish the proof. □

12.10. Ramified prime ideals.

Definition 12.26. Given a finite normal extension L/K of number fields and a prime
ideal p ◁OK . We say that

p is


ramified if e > 1

unramified if e = 1

splits completely if e = f = 1

intertial if e = g = 1.

It is possible to give a criterion on when p ramifies.

Theorem 12.27. Given a finite normal13 extension L/K of number fields, a prime ideal
p ◁OK and another prime q ◁OL above p.

p ramifies in OL at q ⇐⇒ q | diff(OL/OK).

where
diff(OL/OK) :=

{
α ∈ L | α · {β ∈ L, trL/K(β · OL) ⊂ OK} ⊂ OL

}
is an ideal of OL.

13The theorem is stated in a way that the normal assumption can be removed.
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There is a case when diff can be calculated more explicitly

Lemma 12.28. Let L/K be a finite normal extension of number fields. If there exists α
such that OL = OK [α], then

diff(OL/OK) = ⟨f ′α(α)⟩
where fα ∈ OL[X] is the K-minimal polynomial of α.

A key question in algebraic number theory is

Question 12.29. How to determine the splitting behaviours of unramified prime ideals?

12.11. Discriminant. In this subsection we treat a special case of Theorem 12.27. Let
L/Q be a normal finite extension of degree l. For a Q-basis (x1, ..., xl) of L, we have
defined what disc(x1, ..., xl) is. And we also fix, in this subsection, a basis α1, ..., αl of OL
as a Z-module.

The discriminant has an geometric analogue. An example is, consider the projection

{(x, y) ∈ R2, x = y2}

{x ∈ R}

In terms of rings, one might think of R[x] → R[x][
√
x]. We think of the projection

“ramified” at x = 0, which can be detected by dx
dy being zero. Here we have something

similar:

Lemma 12.30. If OL = Z[α] and f is the Q-minimal polynomial of α, then (−1)
l(l−1)

2 Nm(f ′(α)).

Proof. This is a direct calculation. Our assumption OL = Z[α] implies that OL = Z · 1⊕
Z · α⊕ ...⊕ Z · αl−1. Thus (list Gal(L/Q) = {σ1, ..., σl})

disc(OL) =disc(1, α, ..., αl−1)

(if l = 3) =det

1 σ1(α) σ1(α)
2

1 σ2(α) σ1(α)
2

1 σ3(α) σ3(α)
2

2

=
∏
i>j

(σi(α)− σj(α))2

=(−1)l(l−1)/2
∏
i ̸=j

(σi(α)− σj(α)).

(30)

On the other hand

f(x) =
∏

(x− σi(α)) =⇒ f ′(x) =
∑
i

∏
j ̸=i

(x− σj(α))

=⇒ f ′(σk(α)) =
∏
j ̸=k

(σk(α)− σj(α)) = σk(f
′(α))

Combined with Equa.(30) we have

disc(OL) = (−1)
l(l−1)

2 ·Nm(f ′(α)) .

□

Let us also point out a relation between diff and disc.

Lemma 12.31. The absolute norm of diff(OL) is equal to |disc(OL)|.

Proof. It can be checked from the definition that

diff(OL) · O∗
L = OL

where O∗
L := {x ∈ L | Tr (xy) ∈ Z, ∀ y ∈ OL}. Then

|OL/diff(OL)| = |O∗
LOL/O∗

L diff(OL)| = |O∗
L/OL| .

If (β1, ..., βl) is the dual basis to (α1, ..., αl) and

(α1, ..., αl) = (β1, ..., βl) ·A
for some integral matrix A, then

|O∗
L/OL|

2
= |detA|2 =

disc(α1, ..., αl)

disc(β1, ..., βl)
.
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But

(σi(αj)) · (σj(βi)) = Il =⇒ disc(α1, ..., αl) · disc(β1, ..., βl) = 1

So we are done. □

12.12. Discriminant and ramification.

Theorem 12.32. Let L/Q be a finite normal extension and p ∈ Z+ be a prime number.
Then

p ramifies in OL ⇐⇒ p | disc(OL).

Idea of =⇒. The idea is: if pOL ramifies, say, as p2. This allows us to pick x0 ∈ p \ pOL.
Then x0 is a primitive vector in OL, at least at p. Therefore we can complete x0 to a
basis. Then disc of this basis consists of linear combinations of σ(i)(x0)σj(x0) which lives
in p2 = pOL. Thus it is divisible by p! □

Proof of =⇒. Now we start the formal proof. Write pOL = p · I and assume p ramifies.
Then

I is divisible by all prime factors of pOL.
Take α ∈ I \ pOL, written as

α = m1α1 + ...+mlαl, mi ∈ Z, p ∤ m1.

Thus

disc(α, α2, ..., αl) = disc(m1α1, α2, ..., αl) = m2
1 disc(α1, α2, ..., αl).

Since p ∤ m1, it suffices to show p | disc(α, α2, ..., αl). Let me use the case l = 3 to
illustrate this:

disc(α, α2, ..., αl) = det

σ1(α) σ1(α2) σ1(α3)
σ2(α) σ2(α2) σ1(α3)
σ3(α) σ3(α2) σ3(α3)

 ·
σ1(α) σ1(α2) σ1(α3)
σ2(α) σ2(α2) σ1(α3)
σ3(α) σ3(α2) σ3(α3)


=
∑
i≤j

σi(α)σj(α) · βij ∃ βij ∈ OL

Note that σi(α)σj(α) = σi(α · σj′(α)) ∈ pOL: α ∈ I, σj′(α) ∈ σj′(I) ⊂ p so their product
is contained in I · p = pOL.

□

The proof of the other direction uses results in the next subsection.

Proof of ⇐=. Now assume

(A) p | disc(OL);
(B) pOL = p1 · ... · pg factorizes into distinct prime ideals,

from which we will derive a contradiction. Roughly speaking, being unramified implies
that the symmetry is faithful when acting on things related to p. But disc(OL) ≡ 0
(mod p) would say the objects that the Galois group could act on is limited. Contradiction
arises from this tension.

Let us start the formal proof.

Condition A =⇒ disc(OL) = det (Tr (αiαj)) ≡ 0 (mod p)

=⇒ ∃m1 = 1,m2, ...,ml ∈ Z s.t.

m1· (Tr (α1α1) , Tr (α1α2) , ... Tr (α1αl))
+

m2· (Tr (α1α1) , Tr (α1α2) , ... Tr (α1αl))
+
...
+

ml· (Tr (α1α1) , Tr (α1α2) , ... Tr (α1αl))

=

0
(mod p)

As a result, if α :=
∑
miαi, then

Tr (α · θ) ≡ 0 (mod p), ∀ θ ∈ OL.

Note that α ̸∈ pOL =⇒ α /∈ pi for some i. Without loss of generality assume this i = 1.
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On the other hand, we take β ∈ p2 · ... · pg \ p1 and let

Dp1
:= {σ ∈ Gal(L/Q), σ(p1) = p1} = {φ1, ..., φf}.

be the decomposition group at p1. Since pOL is unramified, reduction modulo p1, σ 7→ σ,
induces

Dp1
∼= Gal(Fp1/Fp)

An important consequence is that if λ1, ..., λf ∈ Z and

f∑
i=1

λiφi(θ) ≡ 0 (mod p1) ∀ θ ∈ OL =⇒ λi ≡ 0 (mod p) ∀ i = 1, ..., f. (31)

That is to say, φi’s are linear independent modulo p.
Let me illustrate how to get this when f = 3. By the existence of primitive element,

we find θ0 such that Fp1 = Fp(θ0). Then φi(θ0) ̸= φj(θ0) whenever i ̸= j. Thus

det

1 φ1(θ0) φ1(θ0)
2

1 φ2(θ0) φ2(θ0)
2

1 φ3(θ0) φ3(θ0)
2

 ̸= 0.

This proves Equa.(31).
Now we combine the condition A and B. For every θ ∈ OL,

Tr (αβ · θ) ≡ 0 (mod p) =⇒ Tr (αβ · θ) ≡ 0 (mod p1).

But

Tr (αβ · θ) =
∑

σ∈Dp1

σ(αβ · θ) +
∑

σ/∈Dp1

σ(αβ · θ).

We note that σ(β) ∈ p1 whenever σ /∈ Dp1 . Thus∑
σ∈Dp1

σ(αβ · θ) ≡ 0 (mod p1) ∀ θ ∈ OL.

Since αβ /∈ p1, this implies∑
σ∈Dp1

σ(θ) ≡ 0 (mod p1) ∀ θ ∈ OL.

But this contradicts against Equa.(31).
□

12.13. Decomposition group and Frobenius elements.

Lemma 12.33. Let L/K be a finite normal extension of number fields. Let p ◁ OK be
a prime ideal and q ◁ OL be a prime ideal lying above p. Then we have an extension of
finite fields Fp := OK/p→ Fq := OL/q.

In the unramified case, the Galois group of finite fields is related to the global one.

Definition 12.34. Given a finite normal extension L/K of number fields, a prime ideal
p ◁OK and a prime ideal q ◁OL lying above p. The decomposition group at q is

Dq := {σ ∈ Gal(L/K) | σ(q) = q} .

Theorem 12.35. Notation same as in last lemma. Every σ ∈ Dq induces some σ ∈
Gal(Fq/Fp). If p is unramified, then Dq

∼= Gal(Fq/Fp) via this map.

In the abelian case, we can lift the distinguished Frobenius in automorphism group of
finite fields to Dq.

Lemma 12.36. Let L/K be a finite abelian extension. For each unramified prime ideal
p of OK , there exists a unique Frobp ∈ Gal(L/K) such that for every prime ideal q above
p one has,

(1) Frobp preserves q: Frobp(q) = q;

(2) Frobp(x) ≡ x|OK/p| (mod q) for all x ∈ OL.

Corollary 12.37. Let L/K be a finite abelian extension and p be an unramified prime
ideal of OK , the following two are equivalent:

p splits completely in OL ⇐⇒ Frobp = id .
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13. Splitting of primes and reciprocity laws.

13.1. Cyclotomic fields. Let q be a prime number and ζq := e
2πi
q be a q-th root of

unity.

Theorem 13.1. f(x) := xq−1 + xq−2 + ...+ 1 is the Q-minimal polynomial of ζq.

Since all roots of f are powers of ζq, we have Q(ζq)/Q is a normal extension of degree
q − 1.

Lemma 13.2. For σ ∈ Gal(Q(ζq)/Q), let cyc(σ) be the element in (Z/qZ)× such that

σ(ζq) = ζ
cyc(σ)
q . Then σ 7→ cyc(σ) gives a canonical isomorphism Gal(Q(ζq)/Q) =

(Z/qZ)×, called the cyclotomic character.

Lemma 13.3. If K := Q[ζq], then its ring of integers is Z[ζq].

We need to know the whether a prime ramifies in Z[ζq].

Lemma 13.4. Nm(ζq − 1) = q.

Proof. Indeed

Nm(ζq − 1) =
∏

σ∈Gal(Q(ζq)/Q)

(σ(ζq)− 1) = f(1) = q.

□

Lemma 13.5. disc(Z[ζq]) = (−1)
q−1
2 qq−2.

Proof. By last lecture

disc(Z[ζq]) = (−1)
q−1
2 Nm(f ′(ζq))

On the other hand,

f(x)(x− 1) = xq − 1 =⇒ f ′(x)(x− 1) + f(x) = qxq−1 =⇒ f ′(ζq) =
qζq−1
q

ζq − 1
.

Hence

disc(Z[ζq]) = (−1)
q−1
2
qq−1Nm(ζq)

q−1

Nm(ζq − 1)
= (−1)

q−1
2 qq−2.

□

Corollary 13.6. If p ̸= q is another prime number, then p is unramified in Z[ζq].

13.2. Revisit quadratic reciprocity law. For simplicity, we only prove the following
case of quadratic reciprocity law:

Theorem 13.7. Let p ̸= q be distinct prime numbers. If p ≡ q ≡ 1 (mod 4), then(
p

q

)
=

(
q

p

)
.

Assuming

(
q

p

)
= 1, we want to show

(
p

q

)
= 1 as well.

Since q ≡ 1 (mod 4),

(
−q
p

)
= 1. So x2 + q splits as a product of two linear functions

in (Z/pZ)[X]. Thus we have ring isomorphisms

Z[
√
−q] ∼= Z[X]/⟨X2 + q⟩,

which implies that

Z[
√
−q]/pZ[

√
−q] ∼= Z/pZ[X]/⟨X2 + q⟩ ∼= Z/pZ× Z/pZ

is not a field. Since p ∤ −4q = disc(Z[
√
−q]), we conclude that

pZ[
√
−q] = p1 · p2 with p1 ̸= p2. (32)

That is to say, p splits completely in Q[
√
−q].

On the other hand p ∤ disc(Z[ζq]), so p is unramified in Z[ζq]. Say

pZ[ζq] = p1 · ... · pg.

Also, we have

Frobp(ζq) ≡ ζpq (mod pi) ∀ i = 1, ..., g.
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The order of Frobp is the extension degree of Fpi/Fp, which is equal to
q − 1

g
. If 2 | g,

then

ord(Frobp)
∣∣∣ q − 1

2
, which implies 1 ≡ ζp

(q−1)/2

q ≡ Frob(q−1)/2
p (ζq) (mod pi)

=⇒ p
q−1
2 ≡ 1 (mod q) =⇒

(
p

q

)
= 1.

And the proof would be complete.
It only remains to explain that 2 | g is indeed true, which would follow from Equa.(32).
Let H be the unique index 2 subgroup of Gal(Q(ζq)/Q). Then K := Q(ζq)

H is a qua-
dratic extension of Q by Galois theory. Since every prime different from q is unramified,
a calculation of discriminant shows that K must be Q(

√
−q) (note that 2 ramifies in

Q(
√
q), which has discriminant 4q).

Now we can invoke Equa.(32) to conclude that 2 | g.

13.3. Artin’s reciprocity law: unramified case.

Definition 13.8. For K a number field, a normal extension L/K is said to be the Hilbert
class field of K iff

(1) L/K is unramified: every prime ideals of OK is unramified in L;
(2) L/K is abelian: Gal(L/K) is abelian;
(3) [L : K] = |Cl(OK)|.

Theorem 13.9. Let L/K be the Hilbert class field of a number field K, p ◁ OK be a
prime ideal and Frobp ∈ Gal(L/K) be its Frobenius. Then the map p 7→ Frobp induces a
group isomorphism ArtL/K : Cl(OK) ∼= Gal(L/K), called the Artin reciprocity map.

13.4. Explicit prime factorizations.

Lemma 13.10. Let L/K be a finite normal extension and

(1) α ∈ OL with L = K(α), and φ ∈ OK [X] is the K-minimal polynomial of α;
(2) p ◁OK is an unramified prime ideal. Let f, g ∈ Z+ be its various indices.
(3) g′ is a positive number and φi ∈ OK [X] (i = 1, ..., g′) is such that

φ ≡ φ1 · ... · φg′

is the prime factorization of φ in OK/p[X].
(4) Assume that φ is separable in OK/p[X], that is, all roots of φ in the algebraic

closure of OK/p are all distinct.

The conclusions are

(a) P′
i := ⟨p, φi(α)⟩ is a prime ideal in OL for each i = 1, ..., g′;

(b) pOL = P′
1 · ... ·P′

g′ is the prime decomposition of pOL.

Note that φ being separable is equivalent to NmK (φ′(α)) ̸∈ p.

Corollary 13.11. Assumption as above, p splits completely in L iff φ(x) ≡ 0 (mod p)
has a solution.

Proof. Write pOL = P1 · ... · Pg for the prime decomposition. Since L/K is normal,

φ(x) =
∏l
i=1(x− σi(α)) where Gal(L/K) = {σ1, ..., σl}. Modulo P1, we find

φ(x) ≡
l∏
i=1

(x− σi(α)) ≡ φ1(x) · ... · φg′(x) (mod P1)

=⇒ φi(x) =
∏
k∈Ii

(x− σk(α)) ∀ i = 1, ..., g′

for certain subsets ⊔iIi = {1, ..., l}.
Thus for k ∈ Ii, φi(σk(α)) ∈ P1. On the other hand, σi(α) ̸≡ σj(α) (mod P1) by the

separability assumption. Therefore, φi(σk(α)) ̸∈ P1 if k ̸∈ Ii. Pulling out the σk’s,

φi(α) ∈ σ−1
k (P1) ⇐⇒ k ∈ Ii.

In particular

σ−1
k (P1) ̸= σ−1

k′ (P1) if k, k′ belongs to different I ′is (33)

So g ≥ g′.
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On the other hand,{
OL ⊃ OK [α] ⊃ disc(1, α, ..., αl−1)OL
disc(1, α, ...) = ±NmK (φ′(α)) is coprime to p

=⇒ OL/Pi = OK/p[α] ∀ i = 1, ..., g.

Same argument shows that OL/P1 = OK/p[αi] for all i = 1, ..., l, which implies that
deg(φi) = f = [OL/P1 : OK/p] for every i. In particular, g′ = g.

Now Equa.(33) can be promoted to

σ−1
k (P1) ̸= σ−1

k′ (P1) ⇐⇒ k, k′ belongs to different I ′is

In other words, for each i ∈ {1, ..., g}, {σ−1
k , k ∈ Ii} is a right coset of DP1

, from which
we conclude the existence of unique τi ∈ {1, ..., g} such that

φi(α) ∈ Pτi \
⋃
j ̸=τi

Pj .

This shows that

⟨p, φi(α)⟩ ̸⊂
⋃
j ̸=τi

Pj which implies that ⟨p, φi(α)⟩ = Pτi .

□

13.5. An example of Hilbert class field. In this subsection we set

• K := Q(
√
−14) and L := Q(

√
−14,

√
2
√
2− 1).

It is easy to see that L/K is a degree 4 extension. Indeed, the K-minimal polynomial

of α :=
√
2
√
2− 1 is φ(x) = (x2 + 1)2 − 8 = x4 + 2x2 − 7.

Lemma 13.12. L/K is normal.

However, L/Q is not normal.

Proof. Let us list Galois conjugates of
√
2
√
2− 1 over K:√

2
√
2− 1, −

√
2
√
2− 1,

√
−2
√
2− 1, −

√
−2
√
2− 1.

Only needs to check
√
−2
√
2− 1 ∈ L:√

2
√
2− 1 ∈ L =⇒

√
2 ∈ L =⇒

√
−7 ∈ L√

2
√
2− 1 ·

√
−2
√
2− 1 =

√
−7 =⇒

√
−2
√
2− 1 =

√
−7√

2
√
2− 1

∈ L.

□

Lemma 13.13. Gal(L/K) ∼= Z/4Z.

Proof. Elements in Gal(L/K) are in bijection with Galois conjugates of
√
2
√
2− 1. We

consider the unique σ ∈ Gal(L/K) sending
√
2
√
2− 1 to

√
−2
√
2− 1. Then

√
−7 =

√
−14 · 2

(2
√
2− 1)2 + 1

=⇒ σ(
√
−7) = −

√
−7

=⇒
√
−2
√
2− 1 =

√
−7√

2
√
2− 1

7→ −
√
−7√

−2
√
2− 1

= −
√
2
√
2− 1.

This shows that σ2(
√
2
√
2− 1) = −

√
−2
√
2− 1. So σ2 ̸= id has order 4, implying that

Gal(L/K) ∼= Z/4Z. □

For K, we have shown

• OK = Z[
√
−14] and disc(OK) = −56 = −23 · 7;

• p ̸= 2, 7 ⇐⇒ p is unramified in K;

• p ̸= 2, 7,

(
−14
p

)
= 1 ⇐⇒ p is unramified and splits in K.

Question 13.14. Fixing a prime number p ̸= 2, 7,

(
−14
p

)
= 1, hence pOK = p · p for

some prime ideal p ◁OL. When is p principal?
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If L is the Hilbert class field of K, then Artin’s reciprocity law implies that p principal
iff Frobp is trivial, which, by Corollary 13.11, is equivalent to φ(x) ≡ 0 (mod p) has a
nontrivial solution.

Lemma 13.15. L/K is an unramified extension.

Proof. We will need to decompose L/K into two quadratic extensions:

L = K(
√

2
√
2− 1)

K ′ = K(
√
2) = K(

√
−7)

K = Q(
√
−14)

The desired conclusion would follow from that K ′/K and L/K ′ are both unramified.
Note that for β ∈ OL (or OK′) with minimal polynomial ϕ, we have p ∤ Nm(ϕ′(β)) =⇒

p is unramified. We will construct various β to show all primes are unramified.

K ′/K is unramified.

Take β :=
√
2, then

ϕ(x) = x2 − 2 =⇒ ϕ′(
√
2) = 2

√
2 =⇒ Nm

(
ϕ′(
√
2)
)
= 8.

So p ∤ 2 =⇒ p unramified.

Take β := 1+
√
−7

2 , we get

ϕ(x) = x2 − x+ 2 =⇒ ϕ′(
1 +
√
−7

2
) = 2 · 1 +

√
−7

2
− 1 =

√
−7

=⇒ Nm

(
ϕ′(

1 +
√
−7

2

)
= −7.

So p ∤ 7 =⇒ p unramified.

L/K ′ is unramified.

Take β :=

√
2
√
2− 1 +

√
−2
√
2− 1

2
. Its trace is 0 and norm is 1−

√
−7

2 . So its minimal

polynomial over K ′ is ϕ(x) = x2 − 1−
√
−7

2
.

ϕ′(β) =

√
2
√
2− 1 +

√
−2
√
2− 1 =⇒ Nm(ϕ′(β)) = 2(1−

√
−7)

=⇒ NmK (β) = 32.

So primes not above 2 are unramified.

Take β :=

√
2 + 1 +

√
2
√
2− 1

2
. Its trace is

√
2+1 and norm is

1

4

(
(
√
2 + 1)2 − (2

√
2− 1)

)
=

1. So ϕ(x) = x2 − (
√
2 + 1)x+ 1.

ϕ′(β) = 2 ·
√
2 + 1 +

√
2
√
2− 1

2
− (
√
2 + 1) =

√
2
√
2− 1

=⇒ NmK′(ϕ′(β)) = −(2
√
2− 1) =⇒ NmK(ϕ′(β)) = −7.

So primes not above 7 are unramified.
□

We knew that Cl(OK) = Cl(Z[
√
−14]) ∼= Cl(−4 · 14).

Lemma 13.16. #Cl(−4 · 14) = 4.

Proof. It suffices to list all positive definite reduced forms of discriminant −56:
x2 + 14y2, 2x2 + 7y2, 3x2 ± 2xy + 5y2.

□

Summarizing efforts made:

Lemma 13.17. L is the Hilbert class field of K.
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13.6. Primes of the form x2 + 14y2.

Theorem 13.18. Assume p ̸= 2, 7 is a prime number.

p = x2 + 14y2 ∃ x, y ∈ Z ⇐⇒ p ≡ 1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45 (mod 56);

x4 + 2x2 − 7 ≡ 0 (mod p) has a solution.

Proof.

p = x2 + 14y2 ⇐⇒ In K, p splits into two different principal ideals : pOK = p · p
⇐⇒ In K, p splits as p · p and p splits completely in L

⇐⇒
(
−14
p

)
= 1, Frobp = id

⇐⇒
(
−14
p

)
= 1, x4 + 2x2 − 7 ≡ 0 (mod p) has a solution.

It remains to calculate

(
−14
p

)
and note that OK/p ∼= Z/pZ. □

13.7. Existence of Hilbert class field.

Theorem 13.19. Let K be a number field. There exists a unique Hilbert class field for
K.
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