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Notation15

1. Lecture 6, conditional measures16

1.1. Prelude. In probability theory, one often has a space, thought of as the collection17

of all possible “events” together with a probability measure, measuring which event is18

more likely to happen. Given these data, one can make predictions on “random vari-19

ables”. In mathematical terms, a random variable is just a (measurable) function and20

the “expectation” of this function is nothing but its integration.21

Conditional expectations of a random variable means that we make predictions based22

on certain information. For instance, one might have another function g on this space23

and we have perfect knowledge of what the value of g is. So “conditional on” the value24

of g taken, we make more refined predictions on our random variable.25

Conditional expectations, just like expectations, can also be written as integration of26

the random variable against certain probability measures, known as conditional measures.27

From a different perspective, one may also view conditional measures as “Fubini-type28

theorem”.29

The material of this lecture is mostly taken from [EW11, chapter 5].30

1.2. Statement of the main theorem. Let X be a compact metrizable topological31

space and CX be its Borel σ-algebra. Let µ be a probability measure on (X,BX). We32

refer the triple (X,BX , µ) as a compact Borel probability space.33

Theorem 1.1. Let (X,BX , µ) be a compact Borel probability space and A ⊂ BX be a34

σ-subalgebra. Then there exist a subset X ′ ∈ A of full µ-measure (i.e. µ(X \X ′) = 0)35

and a map X ′ → Prob(X,BX), denoted by x 7→ µA
x , satisfying:36

(1) for every f ∈ C(X), the map x 7→
∫
X
f(ω)µA

x (ω) from X ′ to R is measurable37

(w.r.t. A ∩X ′) and38 ∫
A∩X′

(∫
X

f(ω)µA
x (ω)

)
µ(x) =

∫
A

f(ω)µ(ω), ∀A ∈ A .

(2) for every E ∈ BX ,39

x 7→
∫
X

1E(ω)µ
A
x (ω)

is measurable on (X ′,A ∩X ′) and40 ∫
A∩X′

(∫
X

1E(ω)µ
A
x (ω)

)
µ(x) =

∫
A

1E(ω)µ(ω), ∀A ∈ A .
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or in different terms,1 ∫
A∩X′

µA
x (E)µ(x) = µ(A ∩ E), ∀A ∈ A .

(3) If Y ∈ A is of full measure and x 7→ νA
x is another map from Y to Prob(X,BX)2

satisfying for every f in some dense subset of C(X), the map x 7→
∫
X
f(ω)µA

x (ω)3

from Y to R is measurable (w.r.t. BX ∩ Y ) and4 ∫
A∩Y

(∫
X

f(ω) νA
x (ω)

)
µ(x) =

∫
A

f(ω)µ(ω), ∀A ∈ A ,

then there exists Y ′ ⊂ X ′ ∩ Y in A of full measure such that µA
x = νA

x for all5

x ∈ Y ′;6

(4) If A is additionally assumed to be countably generated, then one can choose X ′′ ⊂7

X ′ in A of full measure such that µA
x ([x]A ) = 1 1 for every x ∈ X ′′ and µA

y = µA
x8

whenever [x]A = [y]A ⊂ X ′′.9

(5) If A1 ⊂ A2 ⊂ ... is an increasing sequence of σ-subalgebras and A∞ is the smallest10

σ-subalgebra containing all of them, then for every E ∈ B, for µ-almost all x,11

the relevant conditional measures are defined and12

lim
n→∞

µAn
x (E) = µA∞

x (E).

The family of measures (µA
x ) satisfying condition (1) and (2) as in the theorem are13

referred to as conditional measures.14

There are two examples when the conclusion of the theorem (which we leave to the15

reader to fill in) might be more familiar to the reader.16

Example 1.2. A is generated by a finite measurable partition (P1, P2, ..., Pn) of X. If17

you prefer, you may even take X to be a finite set to see what happens.18

Example 1.3. X = [0, 1]2 and µ = ϕ(x, y)dxdy where ϕ(x, y) is a measurable non-19

negative function with
∫
ϕ(x, y)dxdy = 1. And20

A := {A× [0, 1], A is Borel measurable in [0, 1]}.

1.3. The set X ′. We are going to construct the measure, thanks to Riesz representation21

theorem, by specifying the integrals of continuous functions.22

First, we choose a countable dense subset C ⊂ C(X) containing the constant one23

function. Let24

CQ := { finite Q-linear combinations of elements in C }

Thus CQ is a countable dense Q-linear subspace of C(X). Let πA denote the orthogonal25

projection from L2(X,BX , µ) → L2(X,A , µ). For every f ∈ CQ, choose some represen-26

tative fA of πA ([f ]) 2. Without loss of generality, for the constant one function 1X ,27

which is A -measurable, choose 1A
X := 1X .28

Lemma 1.4. For every f ∈ CQ,29

µ
{
x
∣∣∣ ∣∣fA (x)

∣∣ > ∥f∥sup
}
= 0.

Proof. The sets A⋆ :=
{
x
∣∣∣ ⋆fA (x) > ∥f∥sup

}
for ⋆ = + or − are in A . Thus their30

characteristic functions 1A⋆ are contained in L2(X,BX , µ). So if µ(A+) ̸= 0,31

∥f∥sup µ(A
+) ≥ ⟨[f ],1A+⟩ = ⟨πA ([f ]),1A+⟩ > ∥f∥sup µ(A

+),

a contradiction. So µ(A+) = 0. Similarly, µ(A−) = 0 and hence µ(A) = 0. □32

Similarly, one shows that33

Lemma 1.5. For every f ∈ CQ with f ≥ 0, one has {x, fA (x) ≥ 0} is an element of A34

with full measure.35

1See Section 1.7 for the definition of [x]A .
2In order to distinguish a genuine function f from its equivalence class up to measure zero, we write

[f ] for the equivalence class.
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Lemma 1.6. For every finite collection (f0, f1, ..., fn) ⊂ CQ and finitely many (q1, ..., qn) ⊂1

Q such that2

f0 =
∑

qifi,

the set3 {
x
∣∣∣ fA

0 (x) =
∑

qif
A
i (x)

}
is A -measurable and has full measure.4

As there are only countably many data, we can find a A -measurable set X ′ of full5

measure such that for every x ∈ X ′,6

(0) 1A
X (x) = 1;7

(1)
∣∣fA (x)

∣∣ ≤ ∥f∥sup , ∀ f ∈ CQ;8

(2) fA (x) ≥ 0, ∀ f ∈ CQ, f ≥ 0;9

(3) fA
0 (x) =

∑n
i=1 qif

A
i (x), ∀ (fi)ni=0 ⊂ CQ, (qi) ⊂ Q with f0 =

∑n
i=1 qifi.10

1.4. Construction of measures. For every x ∈ X ′ and f ∈ C(X), find (fn) ⊂ CQ11

converging to f in sup-norm. We define Λx : C(X) → R by Λx(f) := limn→∞ fA
n (x).12

Lemma 1.7. For x ∈ X ′, (fA
n (x)) converges. Consequently, Λx(f) is well-defined and13

independent of the choice of (fn).14

Proof. Take n,m ∈ Z+ with ∥fn − fm∥sup ≤ ε. As fn − fm ∈ C , we have15 ∣∣fA
n (x)− fA

m (x)
∣∣ = ∣∣(fn − fm)A (x)

∣∣ ≤ ∥fn − fm∥sup ≤ ε.

This shows that (fA
n (x)) is a Cauchy sequence. □16

Also, one sees from the lemma that Λx(f) is independent of the choice of (fn). More-17

over,18

Lemma 1.8. For x ∈ X ′, Λx defines a positive bounded linear functional on C(X)19

sending 1 to 1. Therefore, by Riesz representation theorem, there exists a unique Borel20

probability measure, denoted as µA
x , such that Λx(f) =

∫
f(ω)µA

x (ω).21

Part (1) of Theorem 1.1 is automatically true for f ∈ CQ, the general case follows by,22

say, dominated convergence theorem.23

1.5. Extending to measurable functions. Let O be an open subset of X, by Urysohn24

lemma (see e.g. 2.12 of [Rud87, Chapter 2]), there exists a sequence of continuous func-25

tions (fn) that is uniformly bounded and converges to 1O. Similarly, one can find a uni-26

formly bounded sequence of continuous functions converging to the characteristic function27

of a closed subset.28

By dominated convergence theorem, Part (2) of Theorem 1.1 holds for E being open29

or compact. Actually, the characteristic function of E = O ∩ C, the intersection of some30

open subset and closed subset (for simplicity, we shall call such a set locally closed),31

can also be pointwisely approximated by a sequence of uniformly bounded continuous32

functions. Let33

R := {subsets that can be written as a finite disjoint union of locally closed subsets} .

Lemma 1.9. R is an algebra in the sense that it is closed under taking complements,34

finite intersections and finite unions.35

Proof. For C1, C2 closed and O1, O2 open, we note that (C1∩O1)∪ (C2∩O2) is a disjoint36

union of locally closed subsets:37

(C1 ∩O1) ∪ (C2 ∩O2)

= ((C1 ∩O1) ∩ (C2 ∩O2)) ⊔ (C1 ∩O1) ∩ (C2 ∩O2)
c

=((C1 ∩ C2) ∩ (O1 ∩O2)) ⊔ ((C1 ∩O1) ∩ (Cc
2 ∪Oc

2))

= ((C1 ∩ C2) ∩ (O1 ∩O2)) ⊔ (C1 ∩O1 ∩ Cc
2) ⊔ (C1 ∩O1 ∩Oc

2 ∩ C2).

The rest follows from this. □38

On the other hand, let39

M := {subsets of BX that satisfy part (2) of Theorem 1.1}
3



Lemma 1.10. Let E1 ⊂ E2 ⊂ ... be an increasing sequence of elements in M, then1

E∞ :=
⋃
Ei belongs to M. If E ∈ M, then Ec ∈ M.2

Proof. This follows from dominated convergence theorem. □3

Let σ(R) denote the smallest σ-subalgebra of BX containing R. We have shown that4

R ⊂ M. It is a general fact that if M is a subset of some σ-algebra satisfying the5

conclusion of Lemma 1.10 and contains some subalgebra R as in Lemma 1.9, then M6

contains σ(R). In the current case, σ(R) is BX , so they are equal.7

Lemma 1.11. M = σ(R).8

Proof. Let M0 be the smallest subset of M containing R such that the conclusion of9

Lemma 1.10 holds.10

First take E ∈ R ⊂ M0, consider11

ME := {F ∈ M0 | E ∩ F, E ∪ F, Ec ∩ F, Ec ∪ F ∈ M0}

If F1 ⊂ F2 ⊂ ... are contained in ME , then12

E ∩ (
⋃

Fi) =
⋃

(E ∩ Fi), E ∪ (
⋃

Fi) =
⋃

(E ∪ Fi),

Ec ∩ (
⋃

Fi) =
⋃

(Ec ∩ Fi), Ec ∪ (
⋃

Fi) =
⋃

(Ec ∪ Fi)

are all contained in M0. Hence ∪Fi ∈ ME . If F ∈ ME , then the complements of13

E ∩ F c, E ∪ F c, Ec ∩ F c, Ec ∪ F c

are contained M0. Thus they are also contained in M0, implying that F c ∈ ME .14

So we have shown that ME satisfies the conclusion of Lemma 1.10. On the other hand,15

ME contains R by Lemma 1.9. By minimality of M0, we get ME = M0.16

For general E ∈ M0, MF = M0, ∀F ∈ R implies that R ⊂ ME . Same arguments17

as above show that ME satisfies the conclusion of Lemma 1.10. Again by minimality,18

ME = M0.19

Now that M0 is closed under taking finite unions and intersections, one can directly20

verify that M0 is a σ-algebra. This forces M0 = M = σ(R). □21

Remark 1.12. Similar arguments are used to prove the π-λ theorem in measure theory.22

1.6. Uniqueness. Now we turn to part (3) of Theorem 1.1.23

So we have a dense subset C of C(X) such that for every f ∈ C and A ∈ A24 ∫
A∩Y

(∫
X

f(ω) νA
x (ω)

)
µ(x) =

∫
A

f(ω)µ(ω) =

∫
A∩Y

(∫
X

f(ω)µA
x (ω)

)
µ(x). (1)

Let C ′ ⊂ C be a countable subset that is still dense in C(X). For each f ∈ C ′, let25

D+
f :=

{
x ∈ X ′ ∩ Y

∣∣ µA
x (f) > νA

x (f)
}

D−
f :=

{
x ∈ X ′ ∩ Y

∣∣ µA
x (f) < νA

x (f)
}
.

Applying Equa.(1) we see that both D+
f and D−

f has measure zero. Let Y ′ be the26

complement of their unions as f varies in C ′. Then Y ′ is full in X. And for every x ∈ Y ′
27

and every f ∈ C ′,28 ∫
X

f(ω)µA
x (ω) =

∫
X

f(ω) νA
x (ω)

which extends to all f ∈ C ′ by dominated convergence theorem. So µA
x = νA

x for all29

x ∈ Y ′.30

1.7. Countably generated sigma-subalgebras. Now let A be a countably generated31

σ-subalgebra of BX . For x ∈ X, define32

[x]A :=
⋂

x∈A∈A

A.

We sometimes refer to [x]A as the atom containing x.33
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Lemma 1.13. Take (A1, A2, ....) be such that A is the smallest σ-subalgebra of BX1

containing all Ai’s. Fix x ∈ X and let2

Bi :=

{
Ai, if x ∈ Ai

Ac
i , if x /∈ Ai.

Then [x]A =
⋂∞

i=1 Bi. In particular, [x]A ∈ A .3

Proof. Fix some x ∈ X and let [x]′ :=
⋂∞

i=1 Bi. Consider4

A ′
x := {A ∈ A | either [x]′ ⊂ A or [x]′ ⊂ Ac}

Then one verifies that A ′
x is a σ-algebra containing all Ai’s. Thus it is equal to A . This5

proves the lemma. □6

Fix a countable generator (A1, A2, ....) of A . Let (B1, B2, ...) be obtained by including7

their complements.8

By part (2) of the theorem, we can findX1 ∈ A contained inX ′ (defined by intersection9

of all X ′
Bi
’s) of full measure such that10 ∫

A∩X1

(∫
X

1Bi
(ω)µA

x (ω)

)
µ(x) =

∫
A

1Bi
(ω)µ(ω), ∀A ∈ A .

Let Ni ∈ A defined by
{
x ∈ Bi ∩X1

∣∣ µA
x (Bi) ̸= 1

}
. Then the equation above (with11

A := Ni) shows that µ(Ni) = 0. Let X ′′ := X1 \
⋃

Ni.12

Then for x ∈ X ′′ and x ∈ Bi, one has µA
x (Bi) = 1. Hence µA

x ([x]A ) = 1.13

As for each f ∈ C , the map x 7→ µA
x (f) is A -measurable (on X ′), it must be constant14

on each atom. So µA
x = µA

y whenever [x]A = [y]A ⊂ X ′.15

1.8. Pointwise convergence. Choose X ′ ⊂ X such that for ⋆ = Ai or A∞, conditional16

measures µ⋆
x are defined and (1) and (2) in this theorem hold.17

By (2) of the theorem, for every E ∈ A∞, (the equivalence class of) the function18

x 7→ µ⋆
x(E) is just π⋆([1E ]) for ⋆ = A? for ? = 1, 2, ... or ∞.19

First note that20

Lemma 1.14.
⋃∞

i=1 L
2(X,Ai, µ) is dense in L2(X,A∞, µ).21

Proof. It suffices to show that for every E ∈ A∞ and ε > 0, there exists F ∈
⋃∞

i=1 Ai22

such that µ(E∆F ) < ε. Let A ′ collect all E ∈ A∞ such that this holds, then one checks23

that A ′ is a σ-subalgebra containing all the Ai’s. Consequently, A ′ = A∞ and the proof24

is complete. □25

Thus the convergence in L2-norm is guaranteed by general facts from Hilbert spaces.26

However, going from L2-convergence to pointwise convergence requiring us to pay atten-27

tion to the special choices of subspaces here (think about Carleson’s difficult theorem on28

pointwise convergence of Fourier series). The key is the following “maximal inequalities”:29

Lemma 1.15. For f ∈ L1(X,B, µ) (in application, f = 1E − 1F ) and λ > 0, let30

E(λ) :=

{
x ∈ X ′

∣∣∣∣ max
n∈Z+

µAn
x (f) > λ

}
Then31

µ (E(λ)) ≤ λ−1 ∥f∥1 .

Proof. If all Ai’s are the same, this is just Minkowski inequality. In general, let32

F1 :=
{
x ∈ X ′ ∣∣ µA1

x (f) > λ
}
∈ A1;

F2 :=
{
x ∈ X ′ \ F1

∣∣ µA2
x (f) > λ

}
∈ A2;

F3 :=
{
x ∈ X ′ \ (F1 ∪ F2)

∣∣ µA3
x (f) > λ

}
∈ A3;

......

Then E(λ) =
⊔∞

k=1 Fk. For every k ∈ Z+,33

λµ(Fk) ≤
∫
Fk

µAk
x (f)µ(x) =

∫
Fk

f(ω)µ(ω) ≤
∫
Fk

|f(ω)|µ(ω).
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Thus,1

µ(E(λ)) =
∑

µ(Fk) ≤ λ−1
∑∫

Fk

|f(ω)|µ(ω) ≤ λ−1 ∥f∥1 .

□2

Proof of (5) of Theorem 1.1. Fix E ∈ A∞ and we would like to show that µAn
x (E) con-3

verges to µA∞
x (E) almost surely. So for ε > 0, let4

E(ε) :=
{
x
∣∣ lim sup

∣∣µAn
x (E)− µA∞

x (E)
∣∣ > ε

}
.

It suffices to show that µ(E(ε)) ≤ 4ε for every ε > 0.5

Take k = k(ε) ∈ Z+ and F ∈ Ak such that6

∥1E − 1F ∥2 < ε2.

Note that7

lim sup
∣∣µAn

x (E)− µA∞
x (E)

∣∣ ≤ lim sup
∣∣µAn

x (E)− µAn
x (F )

∣∣+lim sup
∣∣µAn

x (F )− µA∞
x (E)

∣∣ .
And for n larger than k, µAn

x (F ) = µA∞
x (F ) = 1F (x) almost surely. So E(ε) ⊂ F (ε)∪G(ε)8

where9

F (ε) :=

{
x

∣∣∣∣ lim sup
n

∣∣µAn
x (E)− µAn

x (F )
∣∣ > 0.5ε

}
,

G(ε) :=
{
x
∣∣ ∣∣µA∞

x (F )− µA∞
x (E)

∣∣ > 0.5ε
}
.

By Lemma 1.15, we have10

µ(F (ε)), µ(G(ε)) ≤ 2

ε
∥1E − 1F ∥1 ≤ 2ε.

Hence µ(E(ε)) ≤ 4ε as desired. □11
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