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Notation17

1. Lecture 5, a naive explanation of the low and high entropy method18

1.1. Prelude. In this lecture, we present the key idea of the EKL paper [EKL06]: the19

high and low entropy method. We are going to make some (too strong) assumptions20

under which the idea of these methods shall be explained.21

The key are unipotent matrices and their interplay with diagonal matrices. Unipotent22

matrices could be sources of being unbounded. For instance, if Γ is a discrete subgroup23

of G = SL2(R) (or any other semisimple linear Lie group) that contains some non-trivial24

unipotent matrix, then G/Γ is non-compact.25

1.2. Notation.

A =


 et1 0 0

0 et2 0
0 0 et3

 ∣∣∣∣∣∣
∑

ti = 0


A+ =


 et1 0 0

0 et2 0
0 0 et3

 ∈ A

∣∣∣∣∣∣ t1, t2 > 0

 .

For i ̸= j, let Eij be the matrix whose (i, j)-entry is one and is zero elsewhere. Let26

uij(r) := I3 + rEij and Uij := {uij(r), r ∈ R}. For instance,27

U12 :=

u12(s) =

 1 s 0
0 1 0
0 0 1

 ∣∣∣∣∣∣ s ∈ R

 , U13 :=

u13(s) =

 1 0 s
0 1 0
0 0 1

 ∣∣∣∣∣∣ s ∈ R

 ,

U23 :=

u23(s) =

 1 0 0
0 1 s
0 0 1

 ∣∣∣∣∣∣ s ∈ R

 .

Also for (i, j, k), an ordering of {1, 2, 3}, let Uijk := UijUikUjk, Uij,ik := UijUik and28

Uik,jk := UikUjk. These are subgroups. For instance:29

U123 :=


 1 r s

0 1 t
0 0 1

 ∣∣∣∣∣∣ r, s, t ∈ R

 , U12,13 :=


 1 r s

0 1 0
0 0 1

 ∣∣∣∣∣∣ r, s ∈ R

 .

† Email: zhangrunlinmath@outlook.com.
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It is also useful to note that the centralizer of U13 is1

ZSL3
(U13) =


 t u12 u13

0 t−2 u23

0 0 t

 .

1.3. Recurrence leaf. 1
2

Recall that for (α, β) ∈ R2, we let3

Λα,β :=

 1 0 α
0 1 β
0 0 1

 .Z3.

For E ⊂ [0, 1)2,4

CE :=
{
x
∣∣ x = lim an.Λα,β , ∃ (α, β) ∈ E and divergent (an) ⊂ A+

}
.

For x ∈ X3 and an ordering (ijk) of {1, 2, 3}, let5

C ij
x := {u ∈ Uij | u.x ∈ CE}

C ij,ik
x := {u ∈ Uij,ik | u.x ∈ CE} , C ik,jk

x := {u ∈ Uik,jk | u.x ∈ CE}

C ijk
x := {u ∈ Uijk | u.x ∈ CE}

Lemma 1.1. These sets satisfy certain formal properties such as6

1. for u ∈ Uij, C ij
u.x · u = C ij

x ;7

2. for a = diag(a1, a2, a3) ∈ A, C ij
a.x = aC ij

x a−1.8

Now fix some E ⊂ [0, 1)2 such that A+.ΛE is contained in some compact subset of X3.9

From now on, we make the following (too strong) assumptions2:10

Assumption 1.2. • The map x 7→ C ⋆
x is continuous from CE to the set of closed11

subsets3 of some U⋆ for any ⋆ = (ij), (ij, ik), (ik, jk) or (ijk);12

• For every ordering (ijk) of {1, 2, 3}, C ijk
x being infinite for every x ∈ CE is13

equivalent to C kji
x being infinite for every x ∈ CE.14

• for every i ̸= j, we have the following dichotomy: either C ij
x is a singleton {I3}15

for every x ∈ CE or C ij
x is infinite for every CE;16

• there exists i ̸= j such that C ij
x is infinite4 for every x ∈ CE.17

Corollary 1.3. Under the above assumptions, if C ij
x is infinite for every x ∈ CE, then18

C ij
x contains arbitrarily small non-identity elements for every x ∈ CE;19

Proof. If for some x ∈ CE , one can find ρ > 0 with uij((−ρ, ρ)) ∩ C ij
x = {I3}, then20

uij((−aia−1
j ρ, aia

−1
j ρ)) ∩ C ij

x = {I3}, ∀ a = diag(a1, a2, a3) ∈ A.

Choose a(n) = diag(a(n)1, a(n)2, a(n)3) such that a(n)i/a(n)j → +∞. And let y be any21

limit point of a(n).x. Then by continuity, C ij
y = {0}. This is a contradiction. □22

From now on assume E is non-empty and CE is compact5. We would like to derive a23

contradiction. Let us actually make a statement in case it seems too vague to you.24

Theorem 1.4. Let CE (the subscript E means nothing here) be an A-invariant compact25

subset of X3 satisfying Assumption 1.2. Then CE is empty.26

Anticipating the proof, we shall exhibit a U+
ij := uij(R≥0) or U−

ij := uij(R≤0) orbit27

inside CE for some i ̸= j. But this would contradict against the following:28

Lemma 1.5. For each i ̸= j and ⋆ = +,−, every orbit of the semigroup A ·U⋆
ij on X3 is29

unbounded.30

1Maybe the correct name should be recurrence set on leaves?
2The key assumption is the first one on continuity.
3A sequence of closed subsets (En) of Rn converges to E iff for every bounded open subset O ⊂ Rn

the Hausdorff distance between En ∩O and E ∩O decreases to zero.
4One expects that this is likely to hold if dimE > 0
5Recall that for (α, β) that fails Littlewood, we have that C(α,β) is compact
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Proof. Without loss of generality assume (i, j) = (2, 3) and ⋆ = +.1

Take Λ ∈ X3 and v = (v1, v2, v3) ∈ Λ with v3 < 0 (every lattice would contain such a2

vector). By choosing suitable r, the lattice3

u.Λ :=

 1 0 0
0 1 r
0 0 1

 .Λ

contains some vector w = (w1, 0, w2). Then one can find an ∈ A such that an.w → 0.4

By continuity of the systole function, {anu.Λ} is unbounded in X3. □5

1.4. Product structure. Roughly speaking, the lemma below says that “Recurrence6

leaf in the central direction is unchanged along unstable leaves”.7

Lemma 1.6. Take x ∈ CE and u ∈ U12, v ∈ U13,23 such that y := uv.x ∈ CE, then8

u · C 12
y = C 12

x .

Proof. Take a sequence (an) ⊂ A such that conjugating by an contracts U13,23 and an9

commutes with U12 (e.g., take an := diag(n−1, n−1, n2)). Passing to a subsequence,10

assume that an.x converges to x∞ ∈ CE . By continuity of C 12
• ,11

C 12
x = C 12

an.x → C 12
x∞

= u · C 12
u.x∞

← u · C 12
anuv.x = u · C 12

y .

□12

Corollary 1.7. The product map (g, h) 7→ g · h induces a bijection C 12
x × C 13,23

x
∼= C 123

x13

for every x ∈ CE.14

By similar arguments, C 23
x × C 12,13

x
∼= C 123

x , C 12
x × C 13

x
∼= C 12,13

x .... Soon we will see15

that these different decomposition of C 123
x lead to additional invariance.16

Proof. Let u ∈ U12, v ∈ U13,23 and x ∈ CE . We need to show that17

uv.x ∈ CE ⇐⇒ u.x, v.x ∈ CE .

First we do the “ =⇒ ” direction. Indeed, by Lemma 1.6,18

uv.x ∈ CE =⇒ id ∈ C 12
uv.x = u−1 · C 12

x =⇒ u ∈ C 12
x =⇒ u.x ∈ CE .

Similarly,19

x ∈ CE =⇒ id ∈ C 12
x = u · C 12

uv.x =⇒ u−1 ∈ C 12
uv.x =⇒ v.x ∈ CE .

For the reverse implication “⇐=”, by Lemma 1.6,20

x ∈ CE , v.x ∈ CE =⇒ C 12
x = C 12

v.x.

Therefore,21

u.x ∈ CE =⇒ u ∈ C 12
x = C 12

v.x =⇒ uv.x ∈ CE .

□22

1.5. Product structure vs. non-commutativity of the Heisenberg group. Let us23

calculate the commutator [u, v] for u ∈ U12 and v ∈ U23:24  1 s 0
0 1 0
0 0 1

 1 0 0
0 1 t
0 0 1

 1 −s 0
0 1 0
0 0 1

 1 0 0
0 1 −t
0 0 1

 =

 1 0 st
0 1 0
0 0 1

 (1)

Namely,25

u12(s)u23(t)u12(s)
−1u23(t)

−1 = u13(st).

Lemma 1.8. Take x ∈ CE. Assume that both C 12
x and C 23

x contain non-identity elements26

arbitrarily close to the identity, then C 13
x contains u13(R≥0) or u13(R≤0).27

3



Proof. Take non-zero sn → 0 and tn → 0 such that u12(sn) ∈ C 12
x and u23(tn) ∈ C 23

x .1

Without loss of generality assume sn, tn > 0.2

We are going to show that C 13
x , when identified with a subset of R, is invariant un-3

der addition by sntn. Namely, taking z ∈ U13 with z.x ∈ CE , we need to show that4

u13(sntn)z.x ∈ CE . Once this is done, a continuity argument shows that R≥0+C 13
x ⊂ C 13

x .5

In particular, C 13
x contains R≥0.6

Note that x ∈ CE . By Corollary 1.7 (applied to U23 ×U13),7

u23(tn).x, z.x ∈ CE =⇒ u23(tn)z.x ∈ CE .

By Corollary 1.7 again (applied to U12 ×U13,23),8

u12(sn).x, u23(tn)z.x ∈ CE =⇒ u12(sn)u23(tn)z.x ∈ CE .

By Equa.(1), this is equivalent to9

u13(sntn).(u23(tn)u12(sn)z.x) = (u23(tn)) · (u13(sntn)u12(sn)).(z.x) ∈ CE .

By Corollary 1.7 and z.x ∈ CE ,10

(u23(tn)) · (u13(sntn)u12(sn)).(z.x) ∈ CE

(U23 ×U12,13) =⇒ u13(sntn)u23(tn).(z.x) ∈ CE

(U13 ×U12) =⇒ u13(sntn).(z.x) ∈ CE .

So we are done. □11

1.6. Conclusion of the high entropy method.12

Lemma 1.9. For every x ∈ CE, at most one of C 12
x ,C 13

x and C 23
x is infinite.13

Similarly at most one of C 21
x ,C 23

x and C 13
x is infinite.14

There are essentially two cases to consider.15

1.6.1. Case I. Assume that C 12
x and C 23

x are infinite. By Corollary 1.3 (2), C 12
x and C 23

x16

contains non-identity elements arbitrarily close to id. By Lemma 1.8, we may assume17

u13(R≥0) (the other case is similar) belongs to C 13
x . So we have18 

 et1 0 r2
0 et2 0
0 0 et3

 ∣∣∣∣∣∣
∑

ti = 0, r2 ≥ 0

 .x ⊂ CE is bounded, (2)

which is impossible by Lemma 1.5.19

1.6.2. Case II. Assume that C 12
x and C 13

x are infinite but C 23
x is finite for every x. By20

part (2) of the Assumption 1.2, C 321
x is infinite and hence by product structure at least21

one of C 21
x ,C 31

x ,C 32
x is infinite. Then similar arguments as in case I would lead to a22

contradiction against Lemma 1.5.23

1.6.3. One can avoid the use of the assumption here... We did not do this in the24

class. One can skip ahead to the Lemma below.25

We claim that at least one of C 21
x ,C 31

x ,C 32
x is infinite holds without invoking the part26

(2) of the assumption.27

Now assume they are all finite. For η > 0, let628

Hη :=


 et1 r1 r2

0 et2 r3
0 0 e−t1−t2

 ∣∣∣∣∣∣ |t1| , |t2| , |r1| , |r2| , |r3| < η


and29

θt :=

 e−t 0 0
0 1 0
0 0 et


Then by Assumption 1.2, there exists δ1, η1 > 0 small enough such that for every30

x, x′ ∈ CE with d(x, x′) < δ1 =⇒ x′ ∈ H(η1).x.31

6one can also impose r3 = 0
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Indeed, if this were not the case, by the “exponential blow-up” (see Lecture 4), we can1

construct z ̸= z′ ∈ CE such that2

z′ =

 1 0 0
r1 1 0
r2 r3 1

 .z

with r1, r2, r3 arbitrarily close to 0. By Corollary 1.7 together with our assumption that3

these leaves are finite, this would contradict against Assumption 1.2.4

Now, we can cover CE by finitely many {H(η1).xi, i = 1, .., l}. Choose tn → +∞ such5

that zi := lim θtn .xi exists for every i. Then76

CE = θtn .CE ⊂
⋃

θtn .H(η1).xi →
⋃

A.zi ⊂ CE .

Therefore, CE is a finite union of A-orbits. So each of them is compact. This contradicts7

against our assumption8.8

Corollary 1.10. If C 23
x is infinite for every x ∈ CE, then C 21

x , C 31
x , C 12

x and C 13
x are9

finite for every x ∈ CE.10

1.7. A “doubling” property. Henceforth, we assume that C 23
x is infinite and C 12

x , C 13
x11

are finite (for every x ∈ CE). The proof for the remaining cases is similar.12

Lemma 1.11. There exists ρ0 ∈ (0, 1) such that for every x ∈ CE, there exists ρx ∈13

I0 := (−1,−ρ0) ∪ (ρ0, 1) such that u23(ρx) ∈ C 23
x .14

Proof. If not, using the continuity of x 7→ C 12
x , one can show that C 12

x = {I3} for some15

x ∈ CE . A contradiction. □16

Fix such a ρ0 and I0. Using the A-action, one gets17

Corollary 1.12. For every x ∈ CE and every λ > 0, there exists ρx(λ) ∈ λI0 such that18

u23(ρx(λ)) ∈ C 23
x .19

Without loss of generality, assume that C 23
x is infinity for every x ∈ CE and I0 = (ρ0, 1).20

1.8. Unipotent blowup/Low entropy method. The following calculation is the key21

to the low entropy method. Its use in dynamics can be traced back to the work of Ratner22

on joinings of unipotent flows.23  1 0 0
0 1 r
0 0 1

 g11 g12 g13
g21 g22 g23
g31 g32 g33

 1 0 0
0 1 −r
0 0 1


=

 g11 g12 g13 − rg12
g21 + rg31 g22 + rg32 g23 − r2g32 + r(g33 − g22)

g31 g32 g33 − rg32


For simplicity, let r0 := InjRad(CE) > 0.24

For a pair of points x, x′ ∈ CE with d(x, x′) < r0, there exists a unique g = g(x, x′) ∈25

B(r0) such that x′ = g.x. We let26

ε(x, x′) := ∥I3 − g(x, x′)∥sup .

For δ > 0, we let27

rδ(x, x
′) := min

{
δ

|g12|
,

δ

|g31|
,

√
δ√
|g32|

,
δ

|g33 − g22|

}
.

If some denominator is zero, we think of the corresponding term as being +∞. So28

rδ(x, x
′) ∈ (0,+∞]. From the above matrix calculation, we see that29

Lemma 1.13. For x, x′ ∈ CE with d(x, x′) < r0, If g(x, x
′) /∈ ZSL3(U23), then rδ(x, x

′) <30

+∞.31

7make sense the these implications!
8Imagine two compact A-orbit are linked by a unipotent, then suitable an ∈ A would bring these two

tori closer and closer, which is impossible

5



Assume rδ(x, x
′) < +∞, we let n = nδ(x, x

′) be the unique integer such that1

rδ(x, x
′) ∈ [ρ−n

0 , ρ
−(n+1)
0 ).

nδ(x, x
′) is large if ε(x, x′) is much smaller compared to δ.2

By Corollary 1.12, we can find3

r′ = r′δ(x, x
′) ∈ [ρ−n

0 , ρ
−(n+1)
0 ) such that u23(r

′) ∈ C 23
x ,

r′′ = r′′δ (x, x
′) ∈ [ρ

−(n+2)
0 , ρ

−(n+3)
0 ) such that u23(r

′′) ∈ C 23
x .

Also let4

λδ(x, x
′) :=

r′′δ (x, x
′)

r′δ(x, x
′)
∈ (ρ−1

0 , ρ−3
0 ).

For s ∈ R, let5

g(s) := u23(s)gu23(s)
−1 =

 g(s)11 g(s)12 g(s)13
g(s)21 g(s)22 g(s)23
g(s)31 g(s)32 g(s)33


=

 g11 g12 g13 − sg12
g21 + sg31 g22 + sg32 g23 − s2g32 + s(g33 − g22)

g31 g32 g33 − sg32


Lemma 1.14. Fix δ ∈ (0, 1). Take x, x′ ∈ CE with d(x, x′) < r0 and rδ(x, x

′) <6

+∞. Assume further that ε(x, x′) < ρ0(1−ρ0)
4 δ < 1

4ρ0δ. Then there is s := sδ(x, x
′) ∈7

{r′δ(x, x′), r′′δ (x, x
′)} such that8

3δ > max {|g(s)21| , |g(s)13| , |g(s)23|} ≥ ρ1δ

where ρ1 := ρ0(1−ρ0)
4 .9

Proof. The “3δ >” part is easy. Let us focus on the other inequality.10

If rδ(x, x
′) = δ |g12|−1

, then take s := r′δ(x, x
′). We have11

|g(s)13| = |g13 − sg12| ≥ ρ0δ − ε(x, x′) ≥ ρ1δ.

Similarly, if r = rδ(x, x
′) = δ |g31|−1

, then12

|g(s)21| = |g21 + sg31| ≥ ρ0δ − ε(x, x′) ≥ ρ1δ.

where s := r′δ(x, x
′).13

Now assume that r = rδ(x, x
′) = min

{
δ |g32|−

1
2 , δ |g33 − g22|−1

}
, then14

max
{
(r′)2 |g32| , r′ |g33 − g22|

}
≥ ρ0δ.

where r′ := r′δ(x, x
′) Write λ := λδ(x, x

′) and note that15 [
1 1
λ2 λ

] [
−r2g32

r(g33 − g22)

]
=

[
−r2g32 + r(g33 − g22)

−(λr)2g32 + (λr)(g33 − g22)

]
=⇒

[
−r2g32

r(g33 − g22)

]
=

[
1 1
λ2 λ

]−1 [ −r2g32 + r(g33 − g22)
−(λr)2g32 + (λr)(g33 − g22)

]
=⇒

∥∥∥∥[ −r2g32
r(g33 − g22)

]∥∥∥∥
sup

≤ 2

∥∥∥∥∥
[

1 1
λ2 λ

]−1
∥∥∥∥∥
sup

∥∥∥∥[ −r2g32 + r(g33 − g22)
−(λr)2g32 + (λr)(g33 − g22)

]∥∥∥∥
sup

But16 [
1 1
λ2 λ

]−1

=
1

λ− λ2

[
λ −1
−λ2 1

]−1

=⇒

∥∥∥∥∥
[

1 1
λ2 λ

]−1
∥∥∥∥∥
sup

=
λ2

λ2 − λ
≤ 1

1− ρ0
.

So we have17 ∥∥∥∥[ −r2g32 + r(g33 − g22)
−(λr)2g32 + (λr)(g33 − g22)

]∥∥∥∥
sup

≥ ρ0(1− ρ0)

2
δ.

Therefore,18

max {|g(r)23| , |g(λr)23|} ≥
ρ0(1− ρ0)

2
δ − ε(x, x′) ≥ ρ1δ.

□19
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On the other hand, it is direct to verify that:1

Lemma 1.15. Assumption as in last lemma. Also, s = sδ(x, x
′) same as there. Then2

max {|g(s)11 − 1| , |g(s)12| , |g(s)31| , |g(s)32|} ≤ ε(x, x′);

max {|g(s)22 − 1| , |g(s)33 − 1|} ≤ 2
√
ε(x, x′).

If one imagines that when d(x, x′) (and hence ε(x, x′)) is extremely small (compared3

to δ, ρ0,...), the matrix g(s) would look like a unipotent matrix in the centralizer of U23:4  ≈ 1 ≈ 0 g(s)13
g(s)21 ≈ 1 g(s)23
≈ 0 ≈ 0 ≈ 1


5

1.9. Take the limit. For t ∈ R, let6

βt :=

 e2t 0 0
0 e−t 0
0 0 e−t

 ,

which commutes with U23.7

We first find, by pigeon-hole principle, a sequence of pairs (xn, x
′
n) ∈ CE × CE with8

x′
n = βt.xn for some t ∈ R with t ≥ 100;

d(xn, x
′
n) < InjRad(CE) converges to 0.

(3)

Fix some point x0 ∈ CE . For n ∈ Z+, cover CE by finitely many balls of diameter9

< min{n−1, InjRad(CE)}, then we can find m < m′ ∈ Z such that xn := β100m.x0 and10

x′
n := β100m′ .x0 lies in the same ball. This pair of (xn, x

′
n) satisfies Equa.(3) above.11

Thus, there exists a unique gn := g(xn, x
′
n) ∈ SL3(R) with x′

n = gn.xn and d(xn, x
′
n) =12

d(I3, gn). Further assume that13

gn /∈ ZSL3(U23) (4)

Consequently, rδ(xn, x
′
n) ̸= +∞. By Lemma 1.17 below, this assumption is satisfied as14

long as d(xn, x
′
n) is small enough.15

Now choose δ > 0. For n large enough (such that ε(xn, x
′
n) < 0.5(1 − ρ0)δ and16

g(xn, x
′
n) /∈ ZSL3(R)(U23)), apply the unipotent blowup as in the last subsection.17

Define18

yn,δ := u23(sn,δ).xn, y
′
n,δ := u23(sn,δ).x

′
n.

Then19

y′n,δ = gsn,δ
.yn,δ

with (write s = sn,δ and ε := ε(xn, x
′
n) for simplicity)20

g(sn,δ)− I3 =

 ≤ ε ≤ ε g(s)13
g(s)21 ≤ 2

√
ε g(s)23

≤ ε ≤ ε ≤ 2
√
ε


with21

max {|g(sn,δ)13| , |g(sn,δ)21| , |g(sn,δ)23|} ≥ ρ1δ.

Passing to a subsequence, assume22

lim yn,δ = zδ, lim y′n,δ = z′δ, lim g(sn,δ) = u(δ)
7



exists. Then zδ, z
′
δ ∈ CE and z′δ = u(δ).zδ where1

u(δ) =

 1 0 u(δ)13
u(δ)21 1 u(δ)23

0 0 1


with2

ρ1δ ≤ max {|u(δ)13| , |u(δ)21| , |u(δ)23|} ≤ 3δ.

By Assumption 1.2, Corollary 1.7 and Lemma 1.9, u(δ)21 = u(δ)13 = 0.3

By the continuity of C 23
• , we have (note that x′

n = βt.xn and βt centralizes U23)4

C 23
xn

= C 23
x′
n

=⇒ C 23
yn,δ

= C 23
y′
n,δ

=⇒ C 23
zδ

= C 23
z′
δ
.

But u(δ) ∈ U23, hence5

u(δ) · C 23
z′
δ
= C 23

zδ
.

Thus C 23
zδ

is invariant under translation by u(δ). By taking a limit point z of (zδ) as6

δ → 0, we see that, by continuity, U23.z ⊂ CE . Hence (AU23).z is bounded. But this is7

impossible.8

1.10. No exceptional returns. We verify Equa.(4) from last subsection. To have9

slightly better-looking notation, we replace the index (2, 3) by (1, 3) and βt is replaced by10

β′
t := diag(e−t, e2t, e−t) accordingly.11

Lemma 1.16. If M ∈ SL3(Z) only has two different eigenvalues, then all eigenvalues of12

M are ±1.13

Proof. Let p(x) := det(xI3 − M) ∈ Z[x] be the characteristic polynomial of M . By14

assumption, at least two roots of p(x) are the same. Then p(x) is reducible in Q[x].15

If you have not learned Galois theory, then here is a direct way of seeing this. Write16

p(x) = (x − α)2(x − β) = x3 + Ax2 + Bx + C for some α, β ∈ R, A,B,C ∈ Q. By17

comparing the coefficients, we see that18

A = −x2 − 2x1, B = x2
1 + 2x1x2.

The first one implies that 2Ax1 = −2x1x2 − 4x2
1, combined with the second one, we get19

x2
1 + 2/3Ax1 + 1/3B = 0.

By Euclidean algorithm, the polynomial q(x) := x2 + 2/3Ax + 1/3B divides p(x). In20

particular, p(x) is reducible in Q[x].21

Note that p(x) is also reducible in Z[x] by Gauss lemma. Write p(x) = (x2+ax+b)(x−c)22

for some a, b, c ∈ Z. Since detM = 1, we have bc = 1. So b = c = 1 or b = c = −1. If23

x2+ax+ b is irreducible, then it would have two different non-rational roots. So all three24

roots of p are distinct, contradiction. Hence p(x) = (x − x1)(x − x2)(x − x3) for some25

xi ∈ Z with
∏

xi = 1. So all xi = ±1. □26

Lemma 1.17. Take x ∈ X3 be such that A.x is bounded. Assume η ∈ (0, InjRad(x)) is27

small enough such that28

d(I3, g) < η =⇒ ∥I3 − g∥sup < 0.1.

Let t ≥ 100 be such that β′
t.x = g.x with d(x, g.x) = d(I3, g) < η. Then g is not contained29

in the centralizer of U13. Namely, it is impossible for g to take the form30  1 0 0
0 −1 0
0 0 −1

 ·
 e−s 0 0

0 e2s 0
0 0 e−s

 ·
 1 u12 u13

0 1 u23

0 0 1

 or

 e−s 0 0
0 e2s 0
0 0 e−s

 ·
 1 u12 u13

0 1 u23

0 0 1

 .

Proof. Assume g does take this form and let us derive a contradiction.31

By assumption on η, diag(1,−1,−1) is not allowed. So we have32  e−s 0 0
0 e2s 0
0 0 e−s

 1 u12 u13

0 1 u23

0 0 1

 .x =

 e−t 0 0
0 e2t 0
0 0 e−t

 .x

Thus,33  e−(s−t) 0 0
0 e2(s−t) 0
0 0 e−(s−t)

 1 u12 u13

0 1 u23

0 0 1

 is conjugate to some element in SL3(Z).

8



By Lemma 1.16, s = t. But our assumption implies that t ≥ 100 > log(1.1) ≥ s.1

Contradiction. □2
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