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Notation21

1. Lecture 4, Space of lattices in R3, rigidity conjectures and an22

Isolation principle23

1.1. Prelude. The connection between Littlewood conjecture (and Oppenheim conjec-24

ture) and subgroup action on the space of lattices has been (at least implicitly) noted in25

Cassels–Swinnerton-Dyer’s paper [CSD55] in 1950s. Whereas Oppenheim conjecture is26

now a theorem of Margulis, Littlewood conjecture remains unsolved. One contribution27

of the CSD paper is an “isolation principle”. This can be used to establish implications28

between several (unknown) conjectures. Also, it can be used to show that Littlewood29

conjecture holds for pairs of numbers contained in the same cubic number field. One may30

also consult [Mar97] and [LW01].31

1.2. Space of unimodular lattices.32

1.2.1. The definition. Just as before, we say that a discrete subgroup Λ of (R3,+) is a33

lattice iff Λ = Zu+Zv+w for some linearly independent u,v,w ∈ R3. For such a lattice34

Λ = Zu+ Zv + Zw, define ∥Λ∥ := |det((u,v,w))|. A lattice Λ is said to be unimodular35

iff ∥Λ∥ = 1.36

Let X3 denote the set of all unimodular lattices of R3 equipped with the Chabauty37

topology. Under this topology, a sequence of unimodular lattices (Λn) converges to38

Λ ∈ X2 iff we can write Λn = Zun + Zvn + Zwn and Λ = Zu + Zv + Zw such that39

∥un − u∥ , ∥vn − v∥ , ∥wn −w∥ → 0.40

1.2.2. Mahler’s criterion. Define41

sys(Λ) := inf
v ̸=0∈Λ

∥v∥ .

Theorem 1.1. The function sys : X3 → (0,+∞) is bounded, continuous and proper.42

† Email: zhangrunlinmath@outlook.com.
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1.2.3. Group action and local coordinates. The group SL3(R), consisting of 3-by-3 real1

matrices of determinant one, acts on X3 naturally. This action is continuous and transi-2

tive. The map g 7→ Z3 induces a homeomorphism SL3(R)/SL3(Z) ∼= X3.3

We define several subgroups of SL3(R):4

A :=


 et1 0 0

0 et2 0
0 0 et3

 ∣∣∣∣∣∣
∑

ti = 0, ti ∈ R

 ;

5

U++ :=


 1 u12 u13

0 1 u23

0 0 1

 ∣∣∣∣∣∣ uij ∈ R

 ; U−− :=


 1 0 0

u21 1 0
u31 u32 1

 ∣∣∣∣∣∣ uij ∈ R


For s ∈ R and i ̸= j = 1, 2, 3, let uij(s)− I3 be the matrix whose (i, j)-th entry is equal to6

s and is zero otherwise. Note that uij(R) is a subgroup of SL3(R) isomorphic to (R,+).7

For ε > 0, let8

A(ε) :=


 et1 0 0

0 et2 0
0 0 et3

 ∣∣∣∣∣∣
∑

ti = 0, t1, t2 ∈ (−ε, ε)

 ;

9

U++(ε) :=


 1 u12 u13

0 1 u23

0 0 1

 ∣∣∣∣∣∣ uij ∈ (−ε, ε)

 ;

10

U−−(ε) :=


 1 0 0

u21 1 0
u31 u32 1

 ∣∣∣∣∣∣ uij ∈ (−ε, ε)

 .

1.2.4. Local coordinates. For x ∈ X3, let Obtx : SL3(R) → X3 be the orbit map g 7→ g.x.11

For every compact subset C ⊂ X3, there exists ε > 0 such that for every x ∈ C ,12

A(ε)×U−−(ε)×U++(ε) → X3

(a, v, u) 7→ Obt(a · v · u).x
(1)

is a homeomorphism onto an open neighborhood, termed NAU
x (ε), of x ∈ X3. Likewise,13

for ε > 0 small enough, we define NUA
x (ε) by using Obtx(v · u · a) = vua.x for u ∈ U−−,14

v ∈ U++ and a ∈ A.15

1.2.5. A metric. One can define a right-invariant metric on SL3(R) by16

dist(g, h) := log
(
1 +

∥∥gh−1
∥∥
op

+
∥∥hg−1

∥∥
op

)
.

It induces a metric on SL3(R)/SL3(Z) ∼= X3 by17

dist(gZ3, hZ3) := inf
γ∈SL3(Z)

dist(gγ, hγ).

This metric is compatible with the topology given. For ε small enough depending on18

some compact set C , the orbit map g 7→ g.x is an isometry (and in particular, a homeo-19

morphism) from B(ε) := {g, d(g, id) < ε} to its image for every x ∈ C .20

1.2.6. The invariant measure. The group SL3(R) has a bi-invariant locally finite measure21

mSL3(R). After being normalized by a positive scalar, it induces an SL3(R)-invariant22

probability measure mX3
on X3. For ε > 0 small enough, the orbit map g 7→ g.x identifies23

the measure mSL3(R) restricted to B(ε) with mX3 restricted to B(ε).x.24

1.3. Two problems in Diophantine approximations. For a function f : R3 → R,25

let m∗(f) := inf{f(x), x ∈ Z3, x ̸= 0}.26

First we consider real quadratic forms in three variables. Let Q : R3 → R be such27

a form. So there are real numbers (qij)i,j=1,2,3 with qij = qji such that Q(x1, ..., xn) =28 ∑
qijxixj .29

Theorem 1.2. Assume Q is non-degenerate (that is, det(qij) ̸= 0). If Q is indefinite30

and is not a scalar multiple of one with Q-coefficients, then m∗(f) = 0.31

Remark 1.3. Not true if 3 replaced by 2. True for forms of variables more than there,32

which can be reduced to the above case.33
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Let ϕ : R3 → R be a product of three real linear forms. Namely, there exist three1

L1, L2, L3 linear functionals on R3 such that ϕ(x) = L1(x)L2(x)L3(x).2

Conjecture 1.4. Assume that ϕ is non-degenerate (namely, L1, L2, L3 are linearly in-3

dependent) and is not a scalar multiple of one with Q-coefficients. Then m∗(ϕ) = 0.4

1.4. Linear symmetry. Let Q,ϕ be as in the last section. Let5

HQ := SOQ(R) :=
{
g ∈ SL3(R)

∣∣ Q(g.x) = Q(x), ∀x ∈ R3
}
.

6

Hϕ :=
{
g ∈ SL3(R)

∣∣ ϕ(g.x) = ϕ(x), ∀x ∈ R3
}
.

Lemma 1.5. We have7

HQ.Z3 is unbounded in X3 =⇒ m∗(Q) = 0,

Hϕ.Z3 is unbounded in X3 =⇒ m∗(ϕ) = 0.

Lemma 1.6. We have8

HQ.Z3 is compact in X3 =⇒ up to a scalar, Q has rational coefficients ,

Hϕ.Z3 is compact in X3 =⇒ up to a scalar, ϕ has rational coefficients .

Theorem 1.7. Assume Q is indefinite. Every bounded orbit of HQ on X3 is closed (and9

hence compact).10

Conjecture 1.8. Every bounded orbit of A on X3 is closed (and hence compact).11

By the lemmas above, we have12

Corollary 1.9. Conjecture 1.8 =⇒ Conjecture 1.4. And Theorem 1.7 =⇒ Theorem13

1.2.14

1.5. Measure rigidity. How to prove Theorem 1.7? A crucial fact is that the symme-15

try group SOQ(R), locally isomorphic to SL2(R), is generated by unipotent matrices.16

Though the original proof of Theorem 1.7 does not involve any measures, it is possible to17

decompose the proof of Theorem 1.7 into two steps:18

1. Classification of unipotent-invariant ergodic measures: they are all homogeneous;19

2. Deduce Theorem 1.7 from this.20

Regarding A-action, the measure classification is unknown:21

Conjecture 1.10. Every A-invariant probability measure is a convex combination of22

those supported on compact A-orbits and mX3
.23

Conjecture 1.11. Every A-invariant compact subset of X3 is a union of finitely many24

compact A-orbits.25

Conjecture 1.12. Every bounded subset of X3 contains only finitely many compact A-26

orbits.27

We do know the following implications28

Theorem 1.13. Conjecture 1.10 =⇒ Conjecture 1.8 =⇒ Conjecture 1.11 =⇒29

Conjecture 1.12.30

Also,31

Theorem 1.14. Conjecture 1.11 =⇒ Littlewood conjecture.32

The proof of these implications is based on the following “isolation principle”.33

Theorem 1.15. Given a compact A-orbit A.y. For every compact subset C ⊂ X3, there34

exists ε > 0 such that35

dist(x, y) < ε =⇒ A.x ⊈ C

In particular, if the orbit closure of some A-orbit A.x contains a compact A-orbit, then36

A.x is either compact or unbounded.37

Remark 1.16. This (and all the conjectures above) is wrong on X2 where A, isomorphic38

to (R,+), has “rank one”.39

Conjecture 1.10 seems to be partly motivated by a question of Furstenberg [Fur67].40

Let Tp : R/Z → R/Z defined by x + Z 7→ px + Z. Note that there are many irrational41

numbers such that {Tn
p α, n ∈ Z+} is not dense in R/Z.42
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Theorem 1.17. If α is irrational, then1 {
Tn
2 T

m
3 .α

∣∣ n,m ∈ Z+
}

is dense in R/Z.2

Conjecture 1.18. Let µ be a probability measure on R/Z invariant under T2 and T3,3

then µ is a convex combinations of those supported on certain finite sets and the Lebesgue4

measure.5

What we know about Conjecture 1.10 is6

Theorem 1.19. Let µ be an A-invariant probability measure with compact support, then7

hµ(a) = 0 for every a ∈ A.8

This may be compared with (see [Rud90])9

Theorem 1.20. Let µ be an ergodic probability measure on R/Z invariant under T2 and10

T3 and hµ(T2) > 0, then µ is the Lebesgue measure.11

Applications of measure rigidity theorems can be found in the survey [Ein10] or [Lin22].12

1.6. Compact A-orbits. In this section we give a more explicit description of compact13

A-orbits.14

Lemma 1.21. Let AgZ3 be a compact A orbit. Then there exists a cubic number field (i.e.15

field extension of Q of degree three) K, (x, y, z) ∈ K3 and λ ∈ R such that AgZ3 = AMZ3
16

for17

M = λ ·

 x y z
σ2(x) σ2(y) σ2(z)
σ3(x) σ3(y) σ3(z)

 ∈ SL3(R) (2)

where {id, σ2, σ3} denotes the three field embeddings of K into C.18

Lemma 1.22. Assume γ ∈ SL3(Z) is diagonalizable and none of the eigenvalues are19

equal to ±1. Then its characteristic polynomial is irreducible in Q[x].20

Proof. Let p(x) ∈ Z[X] := det(xI3 − γ) be the characteristic polynomial of γ. It suffices21

to show that p(x) is irreducible in Z[x] as it is monic (Gauss’ lemma?). Otherwise,22

p(x) = (x2 + ax+ b)(x+ c), ∃ a, b, c ∈ Z

Since det(γ) = 1, bc = 1. So c = ±1, a contradiction. □23

Proof of Lemma 1.21. By assumption, Ag SL3(Z)/SL3(Z) is compact. In other words,24

A∩ g SL3(Z)g−1 is a lattice in A. Therefore, we can find γ ∈ g−1Ag ∩SL3(Z) with three25

distinct eigenvalues and none of which is equal to ±1. Let p(x) be the characteristic26

polynomial of γ, then p(x) is irreducible by lemma above. Let θ be one of its root. Then27

K := Q(x), isomorphic to Q[x]/(p(x)), has dimension three as a Q-vector space. So there28

exists exactly three different embeddings {id, σ2, σ3} of K into C. By linear algebra, one29

can find (x, y, z) ∈ K3 with30

(x, y, z) · γ = θ(x, y, z)

By applying the other two embeddings, we get31  x y z
σ2(x) σ2(y) σ2(z)
σ3(x) σ3(y) σ3(z)

 · γ =

 θ 0 0
0 σ2(θ) 0
0 0 σ3(θ)

 ·

 x y z
σ2(x) σ2(y) σ2(z)
σ3(x) σ3(y) σ3(z)


Define M as in Equa.(2) where λ is chosen such that M has determinant one. Then32

MγM−1, as well as gγg−1, belongs to A. Replacing θ by σi(θ) and K by σi(K) if33

necessary, we assume that34

MγM−1 = gγg−1.

Consequently, gM−1 commutes with MγM−1 and is therefore diagonal. In particular,35

AgZ3 = AM.Z3. This finishes the proof. □36
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1.7. An equivalent form of Littlewood conjecture. Let1

A+ :=


 et1 0 0

0 et2 0
0 0 et3

 ∣∣∣∣∣∣
∑

ti = 0, t1, t2 > 0


be a sub-semigroup of A.2

For a pair of real numbers (α, β) ∈ R2, let3

Λα,β :=

 1 0 α
0 1 β
0 0 1

 .Z3 = Z

 1
0
0

+ Z

 0
1
0

+ Z

 α
β
1

 .

Lemma 1.23. Let (α, β) ∈ R2. The following two are equivalent4

(1) A+.Λα,β is unbounded in X3;5

(2) (α, β) satisfies Littlewood conjecture.6

Proof. From definition we have7  et1 0 0
0 et2 0
0 0 et3

Λα,β =


 et1(l + nα)

et2(m+ nβ)
e−t1−t2n

 ∣∣∣∣∣∣ l,m, n ∈ Z


Take ε ∈ (0, 1).8

If (t1, t2) ∈ (R+)2 is such that sys(at1,t2Λα,β) < ε, then we can find (l,m, n) ∈ Z3 \{0}9

such that10

|et1(l + nα)| < ε
|et2(m+ nβ)| < ε

|e−t1−t2n| < ε

 =⇒
{

|n| |l + nα| |m+ nβ| < ε3,
n ̸= 0

Hence n ̸= 0 and |n| ⟨nα⟩⟨nβ⟩ < ε3.11

Conversely, let n ∈ Z̸=0 be such that |n| ⟨nα⟩⟨nβ⟩ < ε3. Then one finds l,m such that12

⟨nα⟩ = |l + nα| and ⟨nβ⟩ = |m+ nβ|. Assume l+nα ̸= 0 and m+nβ ̸= 0 (the remaining13

cases are left to the reader). We wish to set t1, t2 ∈ R such that14

et1 =
ε

|l + nα|
, et2 =

ε

|m+ nα|
. (3)

But there is no guarantee that t1, t2 > 0, which happens exactly when one of ⟨nα⟩ or15

⟨nα⟩ is larger than ε. This can be remedied as follows:16

Say ⟨nβ⟩ > ε. By Dirichlet theorem, we can find n2 < ⌈ε−1⌉ such that17

⟨n2nβ⟩ < ⌈ε−1⌉−1 < ε.

On the other hand,18

|n| ⟨n2nα⟩ ≤ |nn2| ⟨nα⟩ < (ε−1 + 1)ε2 < 2ε.

Thus, if replacing n by n′ := nn2 and ε by ε′ :=
3
√
2ε2, we would have t1, t2 as defined by19

Equa.(3) are both positive. One has20 ∣∣et1(l + nα)
∣∣ = ε′,

∣∣et2(m+ nβ)
∣∣ = ε′,

∣∣e−t1−t2n
∣∣ < ε′.

And the proof is complete. □21

1.8. Conjecture 1.11 implies Littlewood. By Lemma 1.23, it suffices to show that22

A+.Λα,β is not bounded. So let us assume that it is and seek for a contradiction.23

Define24

Y :=
{
y ∈ X3

∣∣ y = lima(sn,tn).Λα,β , ∃ sn, tn → +∞
}
.

Then Y is A-invariant and bounded. Let Y be its closure, which is also A-invariant. By25

Conjecture 1.23, Y is a finite union of compact A-orbits. Therefore, Y is also a finite26

union of compact A-orbits, say27

Y = Ay1 ⊔Ay2 ⊔ ... ⊔Ayk.

Choose ε > 0 small enough such that NAyi
(ε) for i = 1, ..., k are disjoint from each other.28

On the other hand, by the definition of Y , there exists T (ε) ∈ R+ such that29

YN :=
{
a(s,t)

∣∣ s, t > T (ε)
}
⊂

k⊔
i=1

NAyi(ε).
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But YN is connected, it has to be contained in a unique NAyi
(ε). In other words, k = 11

and Y = A.y1.2

Using local coordinates, one shows that3

Lemma 1.24. For ε > 0 small enough, the map4

U−−(ε)×U++(ε)×A.y1 → X3

(v, u, a.y1) 7→ vua.y1

is a homeomorphism onto an open subset, called NUA
A.y1

(ε).5

Choose ε > 0 small enough according to this lemma and find N large enough such that6

YN ⊂ NUA
A.y1

(0.5ε). Note that YN is A+-invariant, so we can analyze YN under the action7

of A+ using these local coordinates. For z = u−−(z)u++(z)yz ∈ YN for some yz ∈ A.y18

and a ∈ A+,9

a.z = (au−−(z)a−1) · (au++(z)a−1) · a.yz.
If u++(z) ̸= I3, then one can find a ∈ A+ such that au++(z)a−1 ∈ Uε \ U0.5ε. This is a10

contradiction. Likewise, we also have that the (2, 1)-entry of u−−(z) is zero. Combined11

with Lemma 1.21, we get12  1 α β
0 1 0
0 0 1

 =

 et1 0 0
0 et2 0
0 0 et3

 1 0 0
0 1 0
r1 r2 1

 x y z
σ2(x) σ2(y) σ2(z)
σ3(x) σ3(y) σ3(z)

 · γ

for some13

γ ∈ SL3(Z), t1, t2, t3, r1, r2 ∈ R, x, y, z ∈ some cubic number field K.

Hence14  1 α β
0 1 0
0 0 1

 =

 et1 0 0
0 et2 0
0 0 et3

 1 0 0
0 1 0
r1 r2 1

 x′ y′ z′

σ2(x
′) σ2(y

′) σ2(z
′)

σ3(x
′) σ3(y

′) σ3(z
′)


for some possibly different x′, y′, z′ ∈ K. By comparing the second row of both sides, one15

sees that x′ = z′ = 0, which is a contradiction.16

1.9. Conjecture 1.8 implies Conjecture 1.11. Assume otherwise, then we can find17

infinitely many distinct compact A-orbits A.y1,Ay2, ... contained in some fixed compact18

subset C ⊂ X3. Let y be a limit point of (A.yi)i. Then A.y is contained in C . By19

Conjecture 1.8, A.y is closed. By Theorem 1.15, for z ∈ X3 that is close enough to y, A.z20

compact implies that it can not be contained in C . This is a contradiction.21

1.10. Ergodic decomposition. Let µ be a Borel probability measure on X3. We say22

that µ is A-ergodic iff every A-invariant Borel subset has µ-measure zero or one.23

Lemma 1.25. Let µ be a Borel probability measure on X3. The following three are24

equivalent:25

(1) µ is A-ergodic;26

(2) every A-invariant L1-function is constant almost everywhere;27

(3) If µ = ν1 + (1 − λ)ν2 for some λ ∈ [0, 1] and ν1, ν2 are A-invariant probability28

measure, then λ = 0 or 1.29

Let Prob(X3)
A be the set of A-invariant Borel probability measures on X3 equipped30

with the weak-∗ topology. And let Prob(X3)
A,erg be those ergodic ones.31

Theorem 1.26 (Ergodic decomposition). For every µ ∈ Prob(X3)
A, there exists a prob-32

ability measure λµ on Prob(X3)
A with λµ(Prob(X3)

A,erg) = 1 such that33

µ =

∫
Prob(X3)A

ν λµ(ν).

More explicitly, for a compactly supported continuous function f : X → R, let φf be the34

continuous function on Prob(X3)
A defined by φ(ν) =

∫
f(x)ν(x). Then35 ∫

f(x)µ(x) =

∫
Prob(X3)A

φf (ν)λµ(ν).

Remark 1.27. This can be deduced from Choquet’s theorem. A quick proof for the case36

needed can be found in [Phe01].37
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1.11. Conjecture 1.10 implies Conjecture 1.8. So take A.x to be a bounded A-orbit.1

For T > 0, define2

µT :=
1

4T 2

∫ T

−T

∫ T

−T

(a(s,t))∗δx ds dt ∈ Prob(X3).

Since A.x is bounded, by passing to a subsequence, we assume limn µTn
exists in Prob(X3).3

Let µ denote this limit. Then µ is A-invariant. By ergodic decomposition4

µ =

∫
Prob(X3)A,erg

ν λµ(ν).

Now Conjecture 1.10 says that5

Prob(X3)
A,erg = {mA.y, A.y compact } ⊔ {mX3

}.

As mX3
has unbounded support, λµ must put positive mass on certain mA.y with A.y6

compact. In particular, A.x contains some compact A-orbit in its closure. By Theorem7

1.15, A.x, being bounded, must be compact.8

1.12. Proof of Theorem 1.15. Assume otherwise, namely, there exist a compact subset9

C ⊂ X3 and a sequence (xn) ⊂ X3 converging to y ∈ X3 such that A.xn is contained in10

C for every n, A.y is compact and A.xn ̸= A.y for every n.11

1.12.1. Exponential “blow-up”. Fix ε0 > 0 such that the conclusion of Lemma 1.24 holds.12

For n large enough such that xn ∈ NUA
A.y (0.5ε0),13

xn = u−−(xn)u
++(xn).y(x), u−−(xn) ∈ U−−(0.5ε0), u

++(xn) ∈ U++(0.5ε0), y(x) ∈ A.y.

Now we look at14

max

{
|(u−−(xn))21|, |(u−−(xn))31|, |(u−−(xn))32|,
|(u−−(xn))12|, |(u−−(xn))13| , |(u−−(xn))23|

}
(4)

Without loss of generality, we are going to assume, by passing to a subsequence, that the15

maximum above is taken by |(u−−(xn))12| for all n and that (u−−(xn))12 > 0 for all n.16

Let17

βt :=

 t 0 0
0 t−1 0
0 0 1


Choose tn > 0 such that18

t2n ·
(
u−−(xn)

)
12

= 0.5ε0

Then βtn .xn stays inside the neighborhood NUA
A.y (0.5ε0). Let εn = 0.5ε0

M2
n

be the maximum19

appearing in Equa.(4). About the size of (u−−(βtn .xn))ij (i ̸= j), we have20  0.5ε0 ≤ 0.5ε0
Mn

≤ 0.5ε0
M4

n
≤ 0.5ε0

M3
n

≤ 0.5ε0
M3

n
≤ 0.5ε0

Mn


By passing to a further subsequence, assume βtn .xn converges to x∞ and βtn .y(xn) con-21

verges to y∞. Then we have22

x∞ = u12(0.5ε0).y∞.

By definition, A.x∞ is contained in C .23

1.12.2. Promotion. Now we use a one-parameter subgroup of A that commutes with24

u12(R). Define25

αt :=

 t 0 0
0 t 0
0 0 t−2


Then26

αt.x∞ = u12(0.5ε0)αt.y∞. (5)

Lemma 1.28. {αt.y∞, t ∈ R} is dense in A.y∞ = A.y.27
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By Lemma 1.28 and Equa.(5),1

A.x∞ ⊃ u12(0.5ε0)A.y

Using the A-invariance of the LHS, we get2

A.x∞ ⊃ u12(R+)A.y.

To get a contradiction, it suffices to show that u12(R+)A.y (as lattices) contains arbitrarily3

small non-zero vectors.4

Given ε > 0, one can find (u, v, w)tr ∈ y with u < 0, v > 0. Take t > 0 large enough5

such that |e−tv| < ε and |e−tw| < ε. Then take r := e2tu
−e−tv . One has:6  1 r 0

0 1 0
0 0 1

 ·

 e2t 0 0
0 e−t 0
0 0 e−t

 u
v
w

 =

 0
e−tv
e−tw

 ,

which is a vector contained in the lattice u12(r)a.y for some a ∈ A and r > 0. This shows7

that the sys(·) of elements in A.x∞ could tend to 0. By the continuity of sys(·), A.x∞ is8

non-compact, a contradiction.9

1.13. Littlewood conjecture for cubic numbers. Using a variant of the isolation10

principle presented above, one can show that11

Theorem 1.29. Let K be a cubic totally real number field and α, β ∈ K. Then (α, β)12

satisfies the Littlewood conjecture.13

By taking transpose inverse (·)− tr, one sees that A+.Λα,β is unbounded iff A−.Λ
′

α,β is14

unbounded where15

Λ
′

α,β =

 1 0 0
0 1 0
−α −β 1

 .Z3.

Let {σ1 = id, σ2, σ3} denote the three different embedding of K ↪→ R. Let16

M0 :=

 −σ3(α) −σ3(β) 1
−σ2(α) −σ2(β) 1
−α −β 1


Let λ0 ∈ R such that det(λ0 ·M0) = 1.17

Lemma 1.30. A.(λ0M0).Z3 is compact.18

Proof. Dirichlet’s unit theorem and commensurability of lattices. □19

Note that20  1 0 0
0 1 0
−α −β 1

 =

 t1 0 0
0 t2 0
0 0 t3

 ·

 1 0 0
u21 1 0
0 0 1

 ·

 1 u12 u13

0 1 u23

0 0 1

 ·M0

for some real numbers ti, uij . Thus21

αs.Λ
′
α,β =

 t1 0 0
0 t2 0
0 0 t3

 ·

 1 0 0
u21 1 0
0 0 1

 ·

 1 u12 s3u13

0 1 s3u23

0 0 1

 · αsM0.Z3

Take some sequence sn → 0 such that limαsn(λ0M0).Z3 exists)and is equal to y1. Then22

x1 := limαsnΛ
′
α,β =

 t′1 0 0
0 t′2 0
0 0 t′3

 ·

 1 0 0
u21 1 0
0 0 1

 ·

 1 u12 0
0 1 0
0 0 1

 .y1

Using αs again,23

αs.x1 =

 t′1 0 0
0 t′2 0
0 0 t′3

 ·

 1 0 0
u21 1 0
0 0 1

 ·

 1 u12 0
0 1 0
0 0 1

 · αs.y1

8



By Lemma 1.28,1

{αs.x1, s ∈ R<0} ⊃

 t′1 0 0
0 t′2 0
0 0 t′3

 ·

 1 0 0
u21 1 0
0 0 1

 ·

 1 u12 0
0 1 0
0 0 1

A.y1

=

 1 0 0
u′
21 1 0
0 0 1

 ·

 1 u′
12 0

0 1 0
0 0 1

A.y1

Therefore2

A−.Λ′
α,β ⊃


 1 0 0
su′

21 1 0
0 0 1

 ·

 1 s−1u′
12 0

0 1 0
0 0 1

A.y1

∣∣∣∣∣∣ s ∈ R+


Note that u12 and hence u′

12 is non-zero. Thus, for non-zero (l,m, n)tr ∈ A.y1 (certainly3

l ̸= 0!), by taking4

s :=
mu12

l
we get5  0

mu12u21 +m+mu21u12

n

 ∈ A−.Λ′
α,β

Now we choose (l,m, n) ∈ A.y1 such that6

l < 0, mu12 > 0, m, n very small

Then invoke the A−-action on such a vector. This shows that sys(A−.Λ′
α,β) can not be7

bounded away from 0.8
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