1.2.2. Mahler's criterion. Define

$$
\operatorname{sys}(\Lambda):=\inf _{\mathbf{v} \neq \mathbf{0} \in \Lambda}\|\mathbf{v}\|
$$

2 Theorem 1.1. The function sys : $\mathrm{X}_{3} \rightarrow(0,+\infty)$ is bounded, continuous and proper.
\dagger Email: zhangrunlinmath@outlook.com.
1.2.3. Group action and local coordinates. The group $\mathbf{S L}_{3}(\mathbb{R})$, consisting of 3-by-3 real matrices of determinant one, acts on X_{3} naturally. This action is continuous and transitive. The map $g \mapsto \mathbb{Z}^{3}$ induces a homeomorphism $\mathbf{S L}_{3}(\mathbb{R}) / \mathbf{S L}_{3}(\mathbb{Z}) \cong \mathrm{X}_{3}$.

We define several subgroups of $\mathbf{S L}_{3}(\mathbb{R})$:

$$
\begin{gathered}
\mathrm{A}:=\left\{\left.\left[\begin{array}{ccc}
e^{t_{1}} & 0 & 0 \\
0 & e^{t_{2}} & 0 \\
0 & 0 & e^{t_{3}}
\end{array}\right] \right\rvert\, \sum t_{i}=0, t_{i} \in \mathbb{R}\right\} ; \\
\mathrm{U}^{++}:=\left\{\left.\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
0 & 1 & u_{23} \\
0 & 0 & 1
\end{array}\right] \right\rvert\, u_{i j} \in \mathbb{R}\right\} ; \quad \mathrm{U}^{--}:=\left\{\left.\left[\begin{array}{ccc}
1 & 0 & 0 \\
u_{21} & 1 & 0 \\
u_{31} & u_{32} & 1
\end{array}\right] \right\rvert\, u_{i j} \in \mathbb{R}\right\}
\end{gathered}
$$

For $s \in \mathbb{R}$ and $i \neq j=1,2,3$, let $\mathbf{u}_{i j}(s)-\mathrm{I}_{3}$ be the matrix whose (i, j)-th entry is equal to s and is zero otherwise. Note that $\mathbf{u}_{i j}(\mathbb{R})$ is a subgroup of $\mathbf{S L}_{3}(\mathbb{R})$ isomorphic to $(\mathbb{R},+)$.

For $\varepsilon>0$, let

$$
\mathrm{A}(\varepsilon):=\left\{\left.\left[\begin{array}{ccc}
e^{t_{1}} & 0 & 0 \\
0 & e^{t_{2}} & 0 \\
0 & 0 & e^{t_{3}}
\end{array}\right] \right\rvert\, \sum t_{i}=0, t_{1}, t_{2} \in(-\varepsilon, \varepsilon)\right\}
$$

$$
\mathrm{U}^{++}(\varepsilon):=\left\{\left.\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
0 & 1 & u_{23} \\
0 & 0 & 1
\end{array}\right] \right\rvert\, u_{i j} \in(-\varepsilon, \varepsilon)\right\} ;
$$

$$
\mathrm{U}^{--}(\varepsilon):=\left\{\left.\left[\begin{array}{ccc}
1 & 0 & 0 \\
u_{21} & 1 & 0 \\
u_{31} & u_{32} & 1
\end{array}\right] \right\rvert\, u_{i j} \in(-\varepsilon, \varepsilon)\right\}
$$

1.2.4. Local coordinates. For $x \in \mathrm{X}_{3}$, let $\mathrm{Obt}_{x}: \mathbf{S L}_{3}(\mathbb{R}) \rightarrow \mathrm{X}_{3}$ be the orbit map $g \mapsto g . x$. For every compact subset $\mathscr{C} \subset \mathrm{X}_{3}$, there exists $\varepsilon>0$ such that for every $x \in \mathscr{C}$,

$$
\begin{align*}
\mathrm{A}(\varepsilon) \times \mathrm{U}^{--}(\varepsilon) \times \mathrm{U}^{++}(\varepsilon) & \rightarrow \mathrm{X}_{3} \\
(a, v, u) & \mapsto \operatorname{Obt}(a \cdot v \cdot u) \cdot x \tag{1}
\end{align*}
$$

is a homeomorphism onto an open neighborhood, termed $\mathcal{N}_{x}^{A U}(\varepsilon)$, of $x \in \mathrm{X}_{3}$. Likewise, for $\varepsilon>0$ small enough, we define $\mathcal{N}_{x}^{U A}(\varepsilon)$ by using $\operatorname{Obt}_{x}(v \cdot u \cdot a)=v u a . x$ for $u \in \mathrm{U}^{--}$, $v \in \mathrm{U}^{++}$and $a \in \mathrm{~A}$.
1.2.5. A metric. One can define a right-invariant metric on $\mathbf{S L}_{3}(\mathbb{R})$ by

$$
\operatorname{dist}(g, h):=\log \left(1+\left\|g h^{-1}\right\|_{\mathrm{op}}+\left\|h g^{-1}\right\|_{\mathrm{op}}\right) .
$$

It induces a metric on $\mathbf{S L}_{3}(\mathbb{R}) / \mathbf{S L}_{3}(\mathbb{Z}) \cong \mathrm{X}_{3}$ by

$$
\operatorname{dist}\left(g \mathbb{Z}^{3}, h \mathbb{Z}^{3}\right):=\inf _{\gamma \in \mathbf{S L}_{3}(\mathbb{Z})} \operatorname{dist}(g \gamma, h \gamma)
$$

This metric is compatible with the topology given. For ε small enough depending on some compact set \mathscr{C}, the orbit map $g \mapsto g \cdot x$ is an isometry (and in particular, a homeomorphism) from $B(\varepsilon):=\{g, d(g, \mathrm{id})<\varepsilon\}$ to its image for every $x \in \mathscr{C}$.
1.2.6. The invariant measure. The group $\mathbf{S L}_{3}(\mathbb{R})$ has a bi-invariant locally finite measure $\mathrm{m}_{\mathrm{SL}_{3}(\mathbb{R})}$. After being normalized by a positive scalar, it induces an $\mathrm{SL}_{3}(\mathbb{R})$-invariant probability measure $\mathrm{m}_{\mathrm{X}_{3}}$ on X_{3}. For $\varepsilon>0$ small enough, the orbit map $g \mapsto g . x$ identifies the measure $\mathrm{m}_{\mathbf{S L}_{3}(\mathbb{R})}$ restricted to $B(\varepsilon)$ with $\mathrm{m}_{\mathrm{X}_{3}}$ restricted to $B(\varepsilon) \cdot x$.
1.3. Two problems in Diophantine approximations. For a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, let $m^{*}(f):=\inf \left\{f(x), x \in \mathbb{Z}^{3}, x \neq 0\right\}$.

First we consider real quadratic forms in three variables. Let $Q: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be such a form. So there are real numbers $\left(q_{i j}\right)_{i, j=1,2,3}$ with $q_{i j}=q_{j i}$ such that $Q\left(x_{1}, \ldots, x_{n}\right)=$ $\sum q_{i j} x_{i} x_{j}$.

Theorem 1.2. Assume Q is non-degenerate (that is, $\operatorname{det}\left(q_{i j}\right) \neq 0$). If Q is indefinite and is not a scalar multiple of one with \mathbb{Q}-coefficients, then $m^{*}(f)=0$.

Remark 1.3. Not true if 3 replaced by 2. True for forms of variables more than there, which can be reduced to the above case.

Let $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a product of three real linear forms. Namely, there exist three L_{1}, L_{2}, L_{3} linear functionals on \mathbb{R}^{3} such that $\phi(x)=L_{1}(x) L_{2}(x) L_{3}(x)$.
Conjecture 1.4. Assume that ϕ is non-degenerate (namely, L_{1}, L_{2}, L_{3} are linearly independent) and is not a scalar multiple of one with \mathbb{Q}-coefficients. Then $m^{*}(\phi)=0$.
1.4. Linear symmetry. Let Q, ϕ be as in the last section. Let

$$
\begin{gathered}
H_{Q}:=\mathbf{S O}_{Q}(\mathbb{R}):=\left\{g \in \mathbf{S L}_{3}(\mathbb{R}) \mid Q(g \cdot x)=Q(x), \forall x \in \mathbb{R}^{3}\right\} \\
H_{\phi}:=\left\{g \in \mathbf{S L}_{3}(\mathbb{R}) \mid \phi(g \cdot x)=\phi(x), \forall x \in \mathbb{R}^{3}\right\}
\end{gathered}
$$

Lemma 1.5. We have

$$
\begin{aligned}
H_{Q} \cdot \mathbb{Z}^{3} \text { is unbounded in } \mathrm{X}_{3} & \Longrightarrow m^{*}(Q)=0 \\
H_{\phi} \cdot \mathbb{Z}^{3} \text { is unbounded in } \mathrm{X}_{3} & \Longrightarrow m^{*}(\phi)=0
\end{aligned}
$$

1

Theorem 1.7. Assume Q is indefinite. Every bounded orbit of H_{Q} on X_{3} is closed (and hence compact).
Conjecture 1.8. Every bounded orbit of A on X_{3} is closed (and hence compact).
By the lemmas above, we have
Corollary 1.9. Conjecture $1.8 \Longrightarrow$ Conjecture 1.4. And Theorem $1.7 \Longrightarrow$ Theorem 1.2.
1.5. Measure rigidity. How to prove Theorem 1.7? A crucial fact is that the symmetry group $\mathbf{S O}_{Q}(\mathbb{R})$, locally isomorphic to $\mathbf{S L}_{2}(\mathbb{R})$, is generated by unipotent matrices. Though the original proof of Theorem 1.7 does not involve any measures, it is possible to decompose the proof of Theorem 1.7 into two steps:

1. Classification of unipotent-invariant ergodic measures: they are all homogeneous;
2. Deduce Theorem 1.7 from this.

Regarding A-action, the measure classification is unknown:
Conjecture 1.10. Every A-invariant probability measure is a convex combination of those supported on compact A-orbits and $\mathrm{m}_{\mathrm{X}_{3}}$.
Conjecture 1.11. Every A-invariant compact subset of X_{3} is a union of finitely many compact A-orbits.

Conjecture 1.12. Every bounded subset of X_{3} contains only finitely many compact Aorbits.

We do know the following implications
Theorem 1.13. Conjecture $1.10 \Longrightarrow$ Conjecture $1.8 \Longrightarrow$ Conjecture $1.11 \Longrightarrow$ Conjecture 1.12.

Also,
Theorem 1.14. Conjecture $1.11 \Longrightarrow$ Littlewood conjecture.
The proof of these implications is based on the following "isolation principle".
Theorem 1.15. Given a compact A-orbit A.y. For every compact subset $\mathscr{C} \subset \mathrm{X}_{3}$, there exists $\varepsilon>0$ such that

$$
\operatorname{dist}(x, y)<\varepsilon \Longrightarrow \text { A. } x \nsubseteq \mathscr{C}
$$

In particular, if the orbit closure of some A-orbit A.x contains a compact A-orbit, then A. x is either compact or unbounded.

Remark 1.16. This (and all the conjectures above) is wrong on X_{2} where A , isomorphic to $(\mathbb{R},+)$, has "rank one".

Conjecture 1.10 seems to be partly motivated by a question of Furstenberg [Fur67]. Let $T_{p}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ defined by $x+\mathbb{Z} \mapsto p x+\mathbb{Z}$. Note that there are many irrational numbers such that $\left\{T_{p}^{n} \alpha, n \in \mathbb{Z}^{+}\right\}$is not dense in \mathbb{R} / \mathbb{Z}.

Theorem 1.17. If α is irrational, then

$$
\left\{T_{2}^{n} T_{3}^{m} . \alpha \mid n, m \in \mathbb{Z}^{+}\right\}
$$

is dense in \mathbb{R} / \mathbb{Z}.
Conjecture 1.18. Let μ be a probability measure on \mathbb{R} / \mathbb{Z} invariant under T_{2} and T_{3}, then μ is a convex combinations of those supported on certain finite sets and the Lebesgue measure.

What we know about Conjecture 1.10 is
Theorem 1.19. Let μ be an A-invariant probability measure with compact support, then $h_{\mu}(a)=0$ for every $a \in \mathrm{~A}$.

This may be compared with (see [Rud90])
Theorem 1.20. Let μ be an ergodic probability measure on \mathbb{R} / \mathbb{Z} invariant under T_{2} and T_{3} and $h_{\mu}\left(T_{2}\right)>0$, then μ is the Lebesgue measure.

Applications of measure rigidity theorems can be found in the survey [Ein10] or [Lin22].
1.6. Compact A-orbits. In this section we give a more explicit description of compact A-orbits.

Lemma 1.21. Let $\mathrm{A} g \mathbb{Z}^{3}$ be a compact A orbit. Then there exists a cubic number field (i.e. field extension of \mathbb{Q} of degree three) $K,(x, y, z) \in K^{3}$ and $\lambda \in \mathbb{R}$ such that $\mathrm{A} g \mathbb{Z}^{3}=\mathrm{A} M \mathbb{Z}^{3}$ for

$$
M=\lambda \cdot\left[\begin{array}{ccc}
x & y & z \tag{2}\\
\sigma_{2}(x) & \sigma_{2}(y) & \sigma_{2}(z) \\
\sigma_{3}(x) & \sigma_{3}(y) & \sigma_{3}(z)
\end{array}\right] \in \mathbf{S L}_{3}(\mathbb{R})
$$

where $\left\{\mathrm{id}, \sigma_{2}, \sigma_{3}\right\}$ denotes the three field embeddings of K into \mathbb{C}.
Lemma 1.22. Assume $\gamma \in \mathbf{S L}_{3}(\mathbb{Z})$ is diagonalizable and none of the eigenvalues are equal to ± 1. Then its characteristic polynomial is irreducible in $\mathbb{Q}[x]$.
Proof. Let $p(x) \in \mathbb{Z}[X]:=\operatorname{det}\left(x \mathrm{I}_{3}-\gamma\right)$ be the characteristic polynomial of γ. It suffices to show that $p(x)$ is irreducible in $\mathbb{Z}[x]$ as it is monic (Gauss' lemma?). Otherwise,

$$
p(x)=\left(x^{2}+a x+b\right)(x+c), \quad \exists a, b, c \in \mathbb{Z}
$$

Since $\operatorname{det}(\gamma)=1, b c=1$. So $c= \pm 1$, a contradiction.
Proof of Lemma 1.21. By assumption, $\mathbf{A} g \mathbf{S L}_{3}(\mathbb{Z}) / \mathbf{S L}(\mathbb{Z})$ is compact. In other words, $\mathrm{A} \cap g \mathbf{S L}_{3}(\mathbb{Z}) g^{-1}$ is a lattice in A . Therefore, we can find $\gamma \in g^{-1} \mathbf{A} g \cap \mathbf{S L}_{3}(\mathbb{Z})$ with three distinct eigenvalues and none of which is equal to ± 1. Let $p(x)$ be the characteristic polynomial of γ, then $p(x)$ is irreducible by lemma above. Let θ be one of its root. Then $K:=\mathbb{Q}(x)$, isomorphic to $\mathbb{Q}[x] /(p(x))$, has dimension three as a \mathbb{Q}-vector space. So there exists exactly three different embeddings $\left\{\mathrm{id}, \sigma_{2}, \sigma_{3}\right\}$ of K into \mathbb{C}. By linear algebra, one can find $(x, y, z) \in K^{3}$ with

$$
(x, y, z) \cdot \gamma=\theta(x, y, z)
$$

By applying the other two embeddings, we get

$$
\left[\begin{array}{ccc}
x & y & z \\
\sigma_{2}(x) & \sigma_{2}(y) & \sigma_{2}(z) \\
\sigma_{3}(x) & \sigma_{3}(y) & \sigma_{3}(z)
\end{array}\right] \cdot \gamma=\left[\begin{array}{ccc}
\theta & 0 & 0 \\
0 & \sigma_{2}(\theta) & 0 \\
0 & 0 & \sigma_{3}(\theta)
\end{array}\right] \cdot\left[\begin{array}{ccc}
x & y & z \\
\sigma_{2}(x) & \sigma_{2}(y) & \sigma_{2}(z) \\
\sigma_{3}(x) & \sigma_{3}(y) & \sigma_{3}(z)
\end{array}\right]
$$

Define M as in Equa.(2) where λ is chosen such that M has determinant one. Then $M \gamma M^{-1}$, as well as $g \gamma g^{-1}$, belongs to A. Replacing θ by $\sigma_{i}(\theta)$ and K by $\sigma_{i}(K)$ if necessary, we assume that

$$
M \gamma M^{-1}=g \gamma g^{-1}
$$

Consequently, $g M^{-1}$ commutes with $M \gamma M^{-1}$ and is therefore diagonal. In particular, $\mathrm{A} g \mathbb{Z}^{3}=\mathrm{A} M . \mathbb{Z}^{3}$. This finishes the proof.

1.7. An equivalent form of Littlewood conjecture. Let

$$
\mathrm{A}^{+}:=\left\{\left.\left[\begin{array}{ccc}
e^{t_{1}} & 0 & 0 \\
0 & e^{t_{2}} & 0 \\
0 & 0 & e^{t_{3}}
\end{array}\right] \right\rvert\, \sum t_{i}=0, t_{1}, t_{2}>0\right\}
$$

be a sub-semigroup of A.
For a pair of real numbers $(\alpha, \beta) \in \mathbb{R}^{2}$, let

$$
\Lambda_{\alpha, \beta}:=\left[\begin{array}{lll}
1 & 0 & \alpha \\
0 & 1 & \beta \\
0 & 0 & 1
\end{array}\right] . \mathbb{Z}^{3}=\mathbb{Z}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\mathbb{Z}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\mathbb{Z}\left[\begin{array}{c}
\alpha \\
\beta \\
1
\end{array}\right]
$$

Lemma 1.23. Let $(\alpha, \beta) \in \mathbb{R}^{2}$. The following two are equivalent
(1) $\mathrm{A}^{+} . \Lambda_{\alpha, \beta}$ is unbounded in X_{3};
(2) (α, β) satisfies Littlewood conjecture.

Proof. From definition we have

$$
\left[\begin{array}{ccc}
e^{t_{1}} & 0 & 0 \\
0 & e^{t_{2}} & 0 \\
0 & 0 & e^{t_{3}}
\end{array}\right] \Lambda_{\alpha, \beta}=\left\{\left.\left[\begin{array}{c}
e^{t_{1}}(l+n \alpha) \\
e^{t_{2}}(m+n \beta) \\
e^{-t_{1}-t_{2}} n
\end{array}\right] \right\rvert\, l, m, n \in \mathbb{Z}\right\}
$$

Take $\varepsilon \in(0,1)$.
If $\left(t_{1}, t_{2}\right) \in\left(\mathbb{R}^{+}\right)^{2}$ is such that $\operatorname{sys}\left(\mathbf{a}_{t_{1}, t_{2}} \Lambda_{\alpha, \beta}\right)<\varepsilon$, then we can find $(l, m, n) \in \mathbb{Z}^{3} \backslash\{\mathbf{0}\}$ such that

$$
\left.\begin{array}{r}
\left|e^{t_{1}}(l+n \alpha)\right|<\varepsilon \\
\left|e^{t_{2}}(m+n \beta)\right|<\varepsilon \\
\left|e^{-t_{1}-t_{2}} n\right|<\varepsilon
\end{array}\right\} \quad \Longrightarrow \quad\left\{\begin{array}{l}
|n||l+n \alpha||m+n \beta|<\varepsilon^{3} \\
n \neq 0
\end{array}\right.
$$

Hence $n \neq 0$ and $|n|\langle n \alpha\rangle\langle n \beta\rangle<\varepsilon^{3}$.
Conversely, let $n \in \mathbb{Z}_{\neq 0}$ be such that $|n|\langle n \alpha\rangle\langle n \beta\rangle<\varepsilon^{3}$. Then one finds l, m such that $\langle n \alpha\rangle=|l+n \alpha|$ and $\langle n \beta\rangle=|m+n \beta|$. Assume $l+n \alpha \neq 0$ and $m+n \beta \neq 0$ (the remaining cases are left to the reader). We wish to set $t_{1}, t_{2} \in \mathbb{R}$ such that

$$
\begin{equation*}
e^{t_{1}}=\frac{\varepsilon}{|l+n \alpha|}, e^{t_{2}}=\frac{\varepsilon}{|m+n \alpha|} \tag{3}
\end{equation*}
$$

But there is no guarantee that $t_{1}, t_{2}>0$, which happens exactly when one of $\langle n \alpha\rangle$ or $\langle n \alpha\rangle$ is larger than ε. This can be remedied as follows:

Say $\langle n \beta\rangle>\varepsilon$. By Dirichlet theorem, we can find $n_{2}<\left\lceil\varepsilon^{-1}\right\rceil$ such that

$$
\left\langle n_{2} n \beta\right\rangle<\left\lceil\varepsilon^{-1}\right\rceil^{-1}<\varepsilon
$$

On the other hand,

$$
|n|\left\langle n_{2} n \alpha\right\rangle \leq\left|n n_{2}\right|\langle n \alpha\rangle<\left(\varepsilon^{-1}+1\right) \varepsilon^{2}<2 \varepsilon
$$

Thus, if replacing n by $n^{\prime}:=n n_{2}$ and ε by $\varepsilon^{\prime}:=\sqrt[3]{2 \varepsilon^{2}}$, we would have t_{1}, t_{2} as defined by Equa.(3) are both positive. One has

$$
\left|e^{t_{1}}(l+n \alpha)\right|=\varepsilon^{\prime},\left|e^{t_{2}}(m+n \beta)\right|=\varepsilon^{\prime},\left|e^{-t_{1}-t_{2}} n\right|<\varepsilon^{\prime}
$$

And the proof is complete.
1.8. Conjecture 1.11 implies Littlewood. By Lemma 1.23 , it suffices to show that $\mathrm{A}^{+} . \Lambda_{\alpha, \beta}$ is not bounded. So let us assume that it is and seek for a contradiction.

Define

$$
Y:=\left\{y \in \mathrm{X}_{3} \mid y=\lim \mathbf{a}_{\left(s_{n}, t_{n}\right)} \cdot \Lambda_{\alpha, \beta}, \exists s_{n}, t_{n} \rightarrow+\infty\right\}
$$

Then Y is A-invariant and bounded. Let \bar{Y} be its closure, which is also A-invariant. By Conjecture 1.23, \bar{Y} is a finite union of compact A-orbits. Therefore, Y is also a finite union of compact A-orbits, say

$$
Y=\mathrm{A} y_{1} \sqcup \mathrm{~A} y_{2} \sqcup \ldots \sqcup \mathrm{~A} y_{k}
$$

Choose $\varepsilon>0$ small enough such that $\mathcal{N}_{\mathrm{A} y_{i}}(\varepsilon)$ for $i=1, \ldots, k$ are disjoint from each other. On the other hand, by the definition of Y, there exists $T(\varepsilon) \in \mathbb{R}^{+}$such that

$$
Y_{N}:=\left\{\mathbf{a}_{(s, t)} \mid s, t>T(\varepsilon)\right\} \subset \bigsqcup_{i=1}^{k} \mathcal{N}_{\mathrm{A} y_{i}}(\varepsilon)
$$

But Y_{N} is connected, it has to be contained in a unique $\mathcal{N}_{\mathrm{A} y_{i}}(\varepsilon)$. In other words, $k=1$ and $Y=$ A. y_{1}.

Using local coordinates, one shows that
Lemma 1.24. For $\varepsilon>0$ small enough, the map

$$
\begin{aligned}
\mathrm{U}^{--}(\varepsilon) \times \mathrm{U}^{++}(\varepsilon) \times \mathrm{A} . y_{1} & \rightarrow \mathrm{X}_{3} \\
\left(v, u, a . y_{1}\right) & \mapsto \text { vua. } y_{1}
\end{aligned}
$$

is a homeomorphism onto an open subset, called $\mathcal{N}_{\mathrm{A} . y_{1}}^{U A}(\varepsilon)$.
Choose $\varepsilon>0$ small enough according to this lemma and find N large enough such that $Y_{N} \subset \mathcal{N}_{\mathrm{A} . y_{1}}^{U A}(0.5 \varepsilon)$. Note that Y_{N} is A^{+}-invariant, so we can analyze Y_{N} under the action of A^{+}using these local coordinates. For $z=\mathbf{u}^{--}(z) \mathbf{u}^{++}(z) y_{z} \in Y_{N}$ for some $y_{z} \in$ A. y_{1} and $a \in \mathrm{~A}^{+}$,

$$
a . z=\left(a \mathbf{u}^{--}(z) a^{-1}\right) \cdot\left(a \mathbf{u}^{++}(z) a^{-1}\right) \cdot a . y_{z}
$$

If $\mathbf{u}^{++}(z) \neq \mathrm{I}_{3}$, then one can find $a \in \mathrm{~A}^{+}$such that $a \mathbf{u}^{++}(z) a^{-1} \in \mathrm{U}_{\varepsilon} \backslash \mathrm{U}_{0.5 \varepsilon}$. This is a contradiction. Likewise, we also have that the $(2,1)$-entry of $\mathbf{u}^{--}(z)$ is zero. Combined with Lemma 1.21, we get

$$
\left[\begin{array}{ccc}
1 & \alpha & \beta \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
e^{t_{1}} & 0 & 0 \\
0 & e^{t_{2}} & 0 \\
0 & 0 & e^{t_{3}}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
r_{1} & r_{2} & 1
\end{array}\right]\left[\begin{array}{ccc}
x & y & z \\
\sigma_{2}(x) & \sigma_{2}(y) & \sigma_{2}(z) \\
\sigma_{3}(x) & \sigma_{3}(y) & \sigma_{3}(z)
\end{array}\right] \cdot \gamma
$$

for some

$$
\gamma \in \mathbf{S L}_{3}(\mathbb{Z}), t_{1}, t_{2}, t_{3}, r_{1}, r_{2} \in \mathbb{R}, x, y, z \in \text { some cubic number field } K .
$$

Hence

$$
\left[\begin{array}{ccc}
1 & \alpha & \beta \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
e^{t_{1}} & 0 & 0 \\
0 & e^{t_{2}} & 0 \\
0 & 0 & e^{t_{3}}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
r_{1} & r_{2} & 1
\end{array}\right]\left[\begin{array}{ccc}
x^{\prime} & y^{\prime} & z^{\prime} \\
\sigma_{2}\left(x^{\prime}\right) & \sigma_{2}\left(y^{\prime}\right) & \sigma_{2}\left(z^{\prime}\right) \\
\sigma_{3}\left(x^{\prime}\right) & \sigma_{3}\left(y^{\prime}\right) & \sigma_{3}\left(z^{\prime}\right)
\end{array}\right]
$$

for some possibly different $x^{\prime}, y^{\prime}, z^{\prime} \in K$. By comparing the second row of both sides, one sees that $x^{\prime}=z^{\prime}=0$, which is a contradiction.
1.9. Conjecture 1.8 implies Conjecture 1.11. Assume otherwise, then we can find infinitely many distinct compact A-orbits A. $y_{1}, \mathrm{~A} y_{2}, \ldots$ contained in some fixed compact subset $\mathscr{C} \subset \mathrm{X}_{3}$. Let y be a limit point of $\left(\mathrm{A} . y_{i}\right)_{i}$. Then A. y is contained in \mathscr{C}. By Conjecture 1.8, A.y is closed. By Theorem 1.15, for $z \in \mathrm{X}_{3}$ that is close enough to y, A. z compact implies that it can not be contained in \mathscr{C}. This is a contradiction.
1.10. Ergodic decomposition. Let μ be a Borel probability measure on X_{3}. We say that μ is A-ergodic iff every A-invariant Borel subset has μ-measure zero or one.

Lemma 1.25. Let μ be a Borel probability measure on X_{3}. The following three are equivalent:
(1) μ is A-ergodic;
(2) every A -invariant L^{1}-function is constant almost everywhere;
(3) If $\mu=\nu_{1}+(1-\lambda) \nu_{2}$ for some $\lambda \in[0,1]$ and ν_{1}, ν_{2} are A-invariant probability measure, then $\lambda=0$ or 1 .

Let $\operatorname{Prob}\left(\mathrm{X}_{3}\right)^{\mathrm{A}}$ be the set of A-invariant Borel probability measures on X_{3} equipped with the weak-* topology. And let $\operatorname{Prob}\left(\mathrm{X}_{3}\right)^{\text {A,erg }}$ be those ergodic ones.
Theorem 1.26 (Ergodic decomposition). For every $\mu \in \operatorname{Prob}\left(\mathrm{X}_{3}\right)^{\mathrm{A}}$, there exists a probability measure λ_{μ} on $\operatorname{Prob}\left(\mathrm{X}_{3}\right)^{\mathrm{A}}$ with $\lambda_{\mu}\left(\operatorname{Prob}\left(\mathrm{X}_{3}\right)^{\mathrm{A}, \operatorname{erg}}\right)=1$ such that

$$
\mu=\int_{\operatorname{Prob}\left(\mathrm{X}_{3}\right)^{\mathrm{A}}} \nu \lambda_{\mu}(\nu) .
$$

More explicitly, for a compactly supported continuous function $f: \mathrm{X} \rightarrow \mathbb{R}$, let φ_{f} be the continuous function on $\operatorname{Prob}\left(\mathrm{X}_{3}\right)^{\mathrm{A}}$ defined by $\varphi(\nu)=\int f(x) \nu(x)$. Then

$$
\int f(x) \mu(x)=\int_{\operatorname{Prob}\left(\mathrm{X}_{3}\right)^{\mathrm{A}}} \varphi_{f}(\nu) \lambda_{\mu}(\nu)
$$

Remark 1.27. This can be deduced from Choquet's theorem. A quick proof for the case needed can be found in [Phe01].

1
1.11. Conjecture 1.10 implies Conjecture 1.8. So take A. x to be a bounded A-orbit. For $T>0$, define

$$
\mu_{T}:=\frac{1}{4 T^{2}} \int_{-T}^{T} \int_{-T}^{T}\left(\mathbf{a}_{(s, t)}\right)_{*} \delta_{x} \mathrm{ds} \mathrm{dt} \in \operatorname{Prob}\left(\mathrm{X}_{3}\right)
$$

3 Since A. x is bounded, by passing to a subsequence, we assume $\lim _{n} \mu_{T_{n}}$ exists in $\operatorname{Prob}\left(\mathrm{X}_{3}\right)$.
4 Let μ denote this limit. Then μ is A-invariant. By ergodic decomposition

$$
\mu=\int_{\operatorname{Prob}\left(\mathrm{X}_{3}\right)^{\mathrm{A}, \operatorname{erg}}} \nu \lambda_{\mu}(\nu) .
$$

${ }_{6}$ As $\mathrm{m}_{\mathrm{X}_{3}}$ has unbounded support, λ_{μ} must put positive mass on certain $\mathrm{m}_{\text {A. } y}$ with A.y 7 compact. In particular, A.x contains some compact A-orbit in its closure. By Theorem 81.15 , A. x, being bounded, must be compact.
1.12. Proof of Theorem 1.15. Assume otherwise, namely, there exist a compact subset $\mathscr{C} \subset \mathrm{X}_{3}$ and a sequence $\left(x_{n}\right) \subset \mathrm{X}_{3}$ converging to $y \in \mathrm{X}_{3}$ such that A. x_{n} is contained in \mathscr{C} for every n, A. y is compact and A. $x_{n} \neq$ A. y for every n.
1.12.1. Exponential"blow-up". Fix $\varepsilon_{0}>0$ such that the conclusion of Lemma 1.24 holds.

For n large enough such that $x_{n} \in \mathcal{N}_{\text {A. }}^{U A}\left(0.5 \varepsilon_{0}\right)$, $x_{n}=\mathbf{u}^{--}\left(x_{n}\right) \mathbf{u}^{++}\left(x_{n}\right) . y(x), \quad \mathbf{u}^{--}\left(x_{n}\right) \in \mathrm{U}^{--}\left(0.5 \varepsilon_{0}\right), \mathbf{u}^{++}\left(x_{n}\right) \in \mathrm{U}^{++}\left(0.5 \varepsilon_{0}\right), y(x) \in$ A. y.

$$
\alpha_{t}:=\left[\begin{array}{ccc}
t & 0 & 0 \\
0 & t & 0 \\
0 & 0 & t^{-2}
\end{array}\right]
$$

Then

$$
\begin{equation*}
\alpha_{t} \cdot x_{\infty}=u_{12}\left(0.5 \varepsilon_{0}\right) \alpha_{t} \cdot y_{\infty} \tag{5}
\end{equation*}
$$

Lemma 1.28. $\left\{\alpha_{t} . y_{\infty}, t \in \mathbb{R}\right\}$ is dense in A. $y_{\infty}=$ A. y.

By Lemma 1.28 and Equa.(5),

$$
\overline{\mathrm{A} . x_{\infty}} \supset u_{12}\left(0.5 \varepsilon_{0}\right) \mathrm{A} . y
$$

Using the A-invariance of the LHS, we get

$$
\overline{\mathrm{A} \cdot x_{\infty}} \supset u_{12}\left(\mathbb{R}^{+}\right) \text {A. } y
$$

To get a contradiction, it suffices to show that $u_{12}\left(\mathbb{R}^{+}\right)$A.y (as lattices) contains arbitrarily small non-zero vectors.

Given $\varepsilon>0$, one can find $(u, v, w)^{\operatorname{tr}} \in y$ with $u<0, v>0$. Take $t>0$ large enough such that $\left|e^{-t} v\right|<\varepsilon$ and $\left|e^{-t} w\right|<\varepsilon$. Then take $r:=\frac{e^{2 t} u}{-e^{-t} v}$. One has:

$$
\left[\begin{array}{lll}
1 & r & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
e^{2 t} & 0 & 0 \\
0 & e^{-t} & 0 \\
0 & 0 & e^{-t}
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
0 \\
e^{-t} v \\
e^{-t} w
\end{array}\right]
$$

which is a vector contained in the lattice $u_{12}(r) a . y$ for some $a \in \mathrm{~A}$ and $r>0$. This shows that the $\operatorname{sys}(\cdot)$ of elements in $\overline{\mathrm{A} . x_{\infty}}$ could tend to 0 . By the continuity of $\operatorname{sys}(\cdot), \overline{\mathrm{A} . x_{\infty}}$ is non-compact, a contradiction.
1.13. Littlewood conjecture for cubic numbers. Using a variant of the isolation principle presented above, one can show that

Theorem 1.29. Let K be a cubic totally real number field and $\alpha, \beta \in K$. Then (α, β) satisfies the Littlewood conjecture.

By taking transpose inverse $(\cdot)^{-\operatorname{tr}}$, one sees that $\mathrm{A}^{+} . \Lambda_{\alpha, \beta}$ is unbounded iff $\mathrm{A}^{-} . \Lambda_{\alpha, \beta}^{\prime}$ is unbounded where

$$
\Lambda_{\alpha, \beta}^{\prime}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\alpha & -\beta & 1
\end{array}\right] \cdot \mathbb{Z}^{3}
$$

Let $\left\{\sigma_{1}=\mathrm{id}, \sigma_{2}, \sigma_{3}\right\}$ denote the three different embedding of $K \hookrightarrow \mathbb{R}$. Let

$$
M_{0}:=\left[\begin{array}{ccc}
-\sigma_{3}(\alpha) & -\sigma_{3}(\beta) & 1 \\
-\sigma_{2}(\alpha) & -\sigma_{2}(\beta) & 1 \\
-\alpha & -\beta & 1
\end{array}\right]
$$

Let $\lambda_{0} \in \mathbb{R}$ such that $\operatorname{det}\left(\lambda_{0} \cdot M_{0}\right)=1$.
Lemma 1.30. A. $\left(\lambda_{0} M_{0}\right) \cdot \mathbb{Z}^{3}$ is compact.
Proof. Dirichlet's unit theorem and commensurability of lattices.
Note that

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\alpha & -\beta & 1
\end{array}\right]=\left[\begin{array}{ccc}
t_{1} & 0 & 0 \\
0 & t_{2} & 0 \\
0 & 0 & t_{3}
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
u_{21} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
0 & 1 & u_{23} \\
0 & 0 & 1
\end{array}\right] \cdot M_{0}
$$

for some real numbers $t_{i}, u_{i j}$. Thus

$$
\alpha_{s} \cdot \Lambda_{\alpha, \beta}^{\prime}=\left[\begin{array}{ccc}
t_{1} & 0 & 0 \\
0 & t_{2} & 0 \\
0 & 0 & t_{3}
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
u_{21} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & u_{12} & s^{3} u_{13} \\
0 & 1 & s^{3} u_{23} \\
0 & 0 & 1
\end{array}\right] \cdot \alpha_{s} M_{0} \cdot \mathbb{Z}^{3}
$$

22 Take some sequence $s_{n} \rightarrow 0$ such that $\lim \alpha_{s_{n}}\left(\lambda_{0} M_{0}\right) \cdot \mathbb{Z}^{3}$ exists)and is equal to y_{1}. Then

$$
x_{1}:=\lim \alpha_{s_{n}} \Lambda_{\alpha, \beta}^{\prime}=\left[\begin{array}{ccc}
t_{1}^{\prime} & 0 & 0 \\
0 & t_{2}^{\prime} & 0 \\
0 & 0 & t_{3}^{\prime}
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
u_{21} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & u_{12} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot y_{1}
$$

23
Using α_{s} again,

$$
\alpha_{s} \cdot x_{1}=\left[\begin{array}{ccc}
t_{1}^{\prime} & 0 & 0 \\
0 & t_{2}^{\prime} & 0 \\
0 & 0 & t_{3}^{\prime}
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
u_{21} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & u_{12} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot \alpha_{s} \cdot y_{1}
$$

By Lemma 1.28,

$$
\left.\left.\begin{array}{rl}
\overline{\left\{\alpha_{s} \cdot x_{1}, s \in \mathbb{R}_{<0}\right\}} & \supset
\end{array} \begin{array}{ccc}
t_{1}^{\prime} & 0 & 0 \\
0 & t_{2}^{\prime} & 0 \\
0 & 0 & t_{3}^{\prime}
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
u_{21} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & u_{12} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { A. } y_{1}\right\}
$$

Therefore

$$
\overline{\mathrm{A}^{-} . \Lambda_{\alpha, \beta}^{\prime}} \supset\left\{\left[\begin{array}{ccc}
1 & 0 & 0 \\
s u_{21}^{\prime} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & s^{-1} u_{12}^{\prime} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { A. } y_{1} \mid s \in \mathbb{R}^{+}\right\}
$$

Note that u_{12} and hence u_{12}^{\prime} is non-zero. Thus, for non-zero $(l, m, n)^{\operatorname{tr}} \in$ A. y_{1} (certainly $l \neq 0!$), by taking

$$
s:=\frac{m u_{12}}{l}
$$

we get

$$
\left[\begin{array}{c}
0 \\
m u_{12} u_{21}+m+m u_{21} u_{12} \\
n
\end{array}\right] \in \overline{\mathrm{A}^{-} . \Lambda_{\alpha, \beta}^{\prime}}
$$

Now we choose $(l, m, n) \in$ A. y_{1} such that

$$
l<0, m u_{12}>0, m, n \text { very small }
$$

Then invoke the A^{-}-action on such a vector. This shows that $\operatorname{sys}\left(\mathrm{A}^{-} . \Lambda_{\alpha, \beta}^{\prime}\right)$ can not be bounded away from 0 .

References

[CSD55] J. W. S. Cassels and H. P. F. Swinnerton-Dyer, On the product of three homogeneous linear forms and the indefinite ternary quadratic forms, Philos. Trans. Roy. Soc. London Ser. A 248 (1955), 73-96. MR 706531
[Ein10] Manfred Einsiedler, Applications of measure rigidity of diagonal actions, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, pp. 1740-1759. MR 28278644
[Fur67] Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1-49. MR 2135083
[Lin22] Elon Lindenstrauss, Recent progress on rigidity properties of higher rank diagonalizable actions and applications, Dynamics, geometry, number theory-the impact of Margulis on modern mathematics, Univ. Chicago Press, Chicago, IL, [2022] © 2022, pp. 362-425. MR 44220604
[LW01] Elon Lindenstrauss and Barak Weiss, On sets invariant under the action of the diagonal group, Ergodic Theory Dynam. Systems 21 (2001), no. 5, 1481-1500. MR 18558431
[Mar97] G. A. Margulis, Oppenheim conjecture, Fields Medallists' lectures, World Sci. Ser. 20th Century Math., vol. 5, World Sci. Publ., River Edge, NJ, 1997, pp. 272-327. MR 16229091
[Phe01] Robert R. Phelps, Lectures on Choquet's theorem, second ed., Lecture Notes in Mathematics, vol. 1757, Springer-Verlag, Berlin, 2001. MR 18355746
[Rud90] Daniel J. Rudolph, $\times 2$ and $\times 3$ invariant measures and entropy, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 395-406. MR 10627664

