Notation 1

1. Lecture 3, Hausdorff dimension of BAD 1
1.1. Prelude 1
1.2. Hausdorff dimension 1
1.3. Lower bound of Hausdorff dimension 2
1.4. Convergence of measures 2
1.5. Proof of Lemma 1.3 3
1.6. A remark 3
1.7. Construct Cantor-like sets in BAD 3
1.8. Consequence of mixing 5
References 6

Notation

1. Lecture 3, Hausdorff dimension of BAD

Reference: See [Mat95] for more on Hausdorff dimensions. The main result in this lecture follows [KM96]. Lemma 1.3 is taken from [McM87].
1.1. Prelude. When a set has Lebesgue measure zero, there is a more refined way of measuring its size: Hausdorff dimension. A Lebesgue-null subset of $[0,1)$ could have dimension from 0 to 1 . The classical Cantor's middle third set has Hausdorff dimension $\frac{\log 2}{\log 3}$. In this lecture we will show that the set of badly approximable numbers, which is small in terms of Lebesgue measure, is big in terms of Hausdorff dimension. Its Hausdorff dimension is equal to 1 , proved by Jarnik. We are going to follow the proof by KleinbockMargulis, using the mixing property of geodesic flow to construct a Cantor-like set in BAD with large Hausdorff dimension.
1.2. Hausdorff dimension. Let $E \subset[0,1)$. For $s>0$ and $\varepsilon>0$, define $\mathcal{H}_{\varepsilon}^{s}:=\inf \left\{\sum \operatorname{diam}\left(I_{i}\right)^{s} \mid E \subset \bigcup I_{i}\right.$ countable union of intervals, $\left.\operatorname{diam}\left(I_{i}\right)<\varepsilon, \forall i\right\}$. For $s>0$, define

$$
\mathcal{H}^{s}(E):=\lim _{\varepsilon \rightarrow 0} \mathcal{H}_{\varepsilon}^{s}(E)
$$

Note that such a limit indeed exists (possibly $+\infty$) since $\mathcal{H}_{\varepsilon}^{s}(E)$ is non-decreasing as ε decreases to 0 .

The Hausdorff dimension is defined by

$$
\begin{equation*}
\operatorname{dim}_{\mathrm{H}}(E):=\inf \left\{s \geq 0 \mid \mathcal{H}^{s}(E)=0\right\} \tag{1}
\end{equation*}
$$

If non-empty (otws, $\operatorname{dim}_{H}(E)=0$.), then one can directly check that

$$
\operatorname{dim}_{\mathrm{H}}(E):=\sup \left\{s \geq 0 \mid \mathcal{H}^{s}(E)=+\infty\right\}
$$

From the definition, one sees that
Lemma 1.1. Let $\alpha \in[0,1]$ and E be a subset of $[0,1)$. If there exist $C, \varepsilon>0$ such that for every covering of E by countably many intervals $\left(I_{i}\right)$ with $\operatorname{diam}\left(I_{i}\right)<\varepsilon$, one has $\sum \operatorname{diam}\left(I_{i}\right)^{\alpha}>C$, then $\operatorname{dim}_{\mathrm{H}}(E) \geq \alpha$.

The main goal of this lecture is to prove that
Theorem 1.2. The Hausdorff dimension of BAD is equal to 1.
\dagger Email: zhangrunlinmath@outlook.com.
by requiring E_{i-1} to be the unique element in \mathscr{E}_{i-1} containing $E_{i} \in \mathscr{E}_{i}$ for $i=k, k-1, \ldots, 1$. Further define the weight for E by

$$
\mathbf{w}_{E}:=\frac{1}{\# \mathscr{E}_{k}\left(E^{k-1}\right) \cdot \# \mathscr{E}_{k-1}\left(E^{k-2}\right) \cdot \ldots \cdot \# \mathscr{E}_{2}\left(E^{1}\right) \cdot \# \mathscr{E}_{1}}
$$

21 Now for general $k \in \mathbb{Z}^{+}$, a positive linear functional L_{k} is defined for $f \in C[0,1]^{2}$ by

$$
L_{k}(f):=\sum_{E \in \mathscr{E}_{k}} \mathbf{w}_{E} \cdot N^{k} \cdot \int_{E} f(x) \mathrm{dx}
$$

1 Using the fact that f 's are uniformly continuous, one can check that

[^0]Lemma 1.4. For every $f \in C[0,1]$, the limit $L_{\infty}(f):=\lim _{k \rightarrow \infty} L_{k}(f)$ exists and $f \mapsto$ $L_{\infty}(f)$ is a bounded positive linear functional on $C[0,1]$ mapping the constant one function to 1. Consequently, there exists a probability measure μ such that $L_{\infty}(f)=\int_{0}^{1} f(x) \mu(x)$.

We reserve μ for such a measure till the end of the proof of Lemma 1.3.
1.5. Proof of Lemma 1.3. For $E \in \mathscr{E}_{k}$, find $E=: E^{k} \subset E^{k-1} \subset \ldots \subset E^{1} \subset E^{0}:=[0,1)$ as in Equa.(2). Then $\mu(E)=\mathbf{w}_{E}$. By assumption, each $\# \mathscr{E}_{i}\left(E^{i-1}\right) \geq(1-\delta) N$. Therefore,

$$
\mu(E) \leq \frac{1}{(1-\delta)^{k} N^{k}}
$$

Fix a covering of $E \subset \bigcup I_{i}$ by countably many intervals. For each i, let k_{i} be the unique positive integer such that

$$
\frac{1}{N^{k_{i}+1}} \leq \operatorname{diam}\left(I_{i}\right)<\frac{1}{N^{k_{i}}}
$$

Hence

$$
\mathbf{a}_{\frac{1}{2} \log N} \mathbf{u}_{I}^{+} \cdot x=\mathbf{u}_{[0,1)}^{+} \cdot \phi_{I}(x)
$$

For $x \in \mathrm{X}_{2}$, define a subset $\mathscr{I}_{x}(\operatorname{Good}) \subset \mathscr{I}_{N}$ by

$$
I \in \mathscr{I}_{x}(\operatorname{Good}) \Longleftrightarrow \mathbf{a}_{\frac{1}{2} \log N} \mathbf{u}_{I}^{+} \cdot x \cap \mathscr{C} \neq \emptyset \Longleftrightarrow \mathbf{u}_{[0,1)}^{+} \cdot \phi_{I}(x) \cap \mathscr{C} \neq \emptyset
$$

Thus $\phi_{I}(x) \in \mathscr{C}^{\prime}$ if $I \in \mathscr{I}_{x}($ Good $)$.

2 1.7.1. Initial steps. Let $x_{0}:=\mathbb{Z}^{2}$, we define $\mathscr{E}_{1}:=\mathscr{I}_{x_{0}}($ Good $)$.
Let

$$
\mathscr{I}_{x_{0}}^{2}(\text { Good }):=\left\{\left(I_{1}, I_{2}\right) \mid I_{1} \in \mathscr{I}_{x_{0}}(\operatorname{Good}), I_{2} \in \mathscr{I}_{\phi_{I_{1}}\left(x_{0}\right)}(\text { Good })\right\}
$$

4 For an interval $I=\left[a_{I}, b_{I}\right.$), let σ_{I} be the unique (orientation-preserving) affine transfor5 mation sending $[0,1)$ to $\left[a_{I}, b_{I}\right)$, namely,

$$
\begin{aligned}
\sigma_{I}:[0,1) & \rightarrow I=\left[a_{I}, b_{I}\right) \\
t & \mapsto t a_{I}+(1-t) b_{I} .
\end{aligned}
$$

1 Define

$$
\mathscr{E}_{2}:=\left\{\sigma_{I_{1}}\left(I_{2}\right) \mid\left(I_{1}, I_{2}\right) \in \mathscr{I}_{x_{0}}^{2}(\text { Good })\right\} .
$$

1.7.2. In general.... Given a finite sequence $\mathbb{I}:=\left(I_{1}, I_{2}, \ldots, I_{k}\right)$ of elements in \mathscr{I}_{N}, for $i \in\{1, \ldots, k\}$, let

$$
x_{i}^{\mathbb{I}}:=\phi_{I_{i}} \circ \phi_{I_{i-1}} \circ \ldots \circ \phi_{I_{1}}\left(x_{0}\right) .
$$

By default, set $x_{0}^{\mathbb{I}}:=x_{0}$. Define, for $k \in \mathbb{Z}^{+}$,

$$
\mathscr{I}_{x_{0}}^{k}(\operatorname{Good}):=\left\{\mathbb{I}=\left(I_{1}, \ldots, I_{k}\right) \mid I_{i} \in \mathscr{I}_{x_{i-1}^{\mathbb{I}}}(\text { Good }), \forall i=1, \ldots, N\right\}
$$

and

$$
\mathscr{E}_{k}:=\left\{\sigma_{I_{1}} \circ \ldots \circ \sigma_{I_{k-1}}\left(I_{k}\right) \mid\left(I_{1}, \ldots, I_{k}\right) \in \mathscr{I}_{x_{0}}^{k}(\operatorname{Good})\right\}
$$

Lemma 1.6. Given $N \in \mathbb{Z}^{+}$and a compact subset \mathscr{C} of X_{2}. The family of sets $\left(\mathscr{E}_{k}\right)$ constructed above satisfy condition (1) in Lemma 1.3. And $E_{\infty}:=\cap_{k=1}^{\infty} \cup_{E \in \mathscr{E}_{k}} E$ is contained in BAD.

Proof. The first part follows from the construction. Turn to the second part. By definition, for $s \in \mathscr{E}_{k}$ associated with $\mathbb{I}=\left(I_{1}, \ldots, I_{k}\right)$, and for each $i=1, . ., k, x_{i}^{\mathbb{I}}$ is contained in \mathscr{C}. Also, $\mathbf{a}_{\frac{1}{2} \log N}^{i} \mathbf{u}_{s}^{+} \cdot x_{0} \subset \mathbf{u}_{[0,1]}^{+} \cdot x_{i}^{\mathbb{I}}$. Thus $\mathbf{a}_{\frac{1}{2} \log N}^{k} \mathbf{u}_{s}^{+} \cdot x_{0} \subset \mathscr{C}^{\prime}$.

Now take $s \in E_{\infty}$, we have seen that $\mathbf{a}_{\frac{1}{2} \log N}^{k} \mathbf{u}_{s}^{+} . x_{0} \subset \mathscr{C}^{\prime}$ for every $k \in \mathbb{Z}^{+}$. Thus $\mathbf{a}_{\geq 0} \mathbf{u}_{s}^{+} \cdot x_{0} \subset \mathbf{a}_{\left[0, \frac{1}{2} \log N\right]} \cdot \mathscr{C}^{\prime}$ is bounded. By Dani correspondence, s is badly approximable.

Note that actually BAD can be written as a countable union of such E_{∞} 's. And we need to choose N, \mathscr{C} such that condition (2) from Lemma 1.3 holds for δ fixed but N tends to infinity.
1.8. Consequence of mixing. Recall from lecture 2.5 we have

Theorem 1.7. Fix $y_{0} \in \mathrm{X}_{2}, \varepsilon_{0} \in(0,1)$ and a compact subset \mathscr{C} of X_{2}. There exist $\delta, T>0$ and $M \in 2 \mathbb{Z}^{+}$such that for every $x \in \mathscr{C}$ and $T^{\prime}>T$,

$$
\int_{-0.5}^{0.5} \mathbf{1}_{B_{y_{0}}\left(\varepsilon_{0}\right)}\left(\mathbf{a}_{T^{\prime}} \mathbf{u}_{t}^{+} \cdot x\right) \mathrm{dt}>\delta
$$

Fix some $y_{0} \in \mathrm{X}_{2}$ and $\varepsilon_{0} \in(0,1)$. Let $\mathscr{C}_{3}:=\mathbf{u}_{[-3,3]}^{+} \cdot \overline{B_{y_{0}}\left(\varepsilon_{0}\right)}$. By Theorem 1.7, we find $\delta_{0}>0, T_{0}>0$ such that for every $T>T_{0}$ and $x \in \mathscr{C}_{3}$,

$$
\operatorname{Leb}\left\{t \in[-0.5,0.5] \mid \mathbf{a}_{T} \mathbf{u}_{t}^{+} \cdot x \in B_{y_{0}}\left(\varepsilon_{0}\right)\right\}>\delta_{0}
$$

2
For $x \in \mathscr{C}_{2}:=\mathbf{u}_{[-2,2]}^{+} \cdot \overline{B_{y_{0}}\left(\varepsilon_{0}\right)}$, apply the above to $\mathbf{u}_{0.5}^{+} \cdot x \in \mathscr{C}_{3}$, we get

$$
\begin{equation*}
\operatorname{Leb}\left\{t \in[0,1] \mid \mathbf{a}_{T} \mathbf{u}_{t}^{+} \cdot x \in B_{y_{0}}\left(\varepsilon_{0}\right)\right\}>\delta_{0}, \quad \forall T>T_{0} \tag{3}
\end{equation*}
$$

Apply the Cantor-like set construction to N with $\frac{1}{2} \log (N)>T_{0}$ and $\mathscr{C}:=\mathscr{C}_{1}:=$ $\mathbf{u}_{[-1,1]}^{+} \cdot \overline{B_{y_{0}}\left(\varepsilon_{0}\right)}$. For simplicity write $h_{N}:=\mathbf{a}_{\frac{1}{2} \log (N)}$.

Take $E \in \mathscr{E}_{k}$, we need to bound

$$
\frac{\#\left\{F \in \mathscr{E}_{k+1} \mid F \subset E\right\}}{N}
$$

from below. Recall that E is of the form $\sigma_{I_{1}} \circ \ldots \circ \sigma_{I_{k-1}}\left(I_{k}\right)$ for some $\mathbb{I}=\left(I_{i}\right)_{i=1}^{k} \subset \mathscr{I}_{N}$. And if $I_{i}=\left[a_{i}, b_{i}\right)$, we have defined

$$
\mathscr{C}_{1} \ni x_{k}^{\mathbb{I}}=h_{N} \mathbf{u}_{a_{k}}^{+} \cdot x_{k-1}^{\mathbb{I}}=\ldots=\left(h_{N} \mathbf{u}_{a_{k}}^{+}\right) \cdot\left(h_{N} \mathbf{u}_{a_{k-1}}^{+}\right) \cdot \ldots \cdot\left(h_{N} \mathbf{u}_{a_{1}}^{+}\right) \cdot x_{0}
$$

where $x_{0}=\mathbb{Z}^{2}$ is the identity coset. Moreover, we have a bijection

$$
\begin{aligned}
\mathscr{J}_{x_{k}^{I}}(\text { Good }) & \rightarrow\left\{F \in \mathscr{E}_{k+1} \mid F \subset E\right\} \\
I & \mapsto \sigma_{I_{1}} \circ \ldots \circ \sigma_{I_{k}}(I) .
\end{aligned}
$$

Recall an interval $I=\left[a_{I}, b_{I}\right) \in \mathscr{I}_{N}$ is contained in $\mathscr{I}_{x_{k}^{I}}(\mathrm{Good})$ iff $h_{N} \mathbf{u}_{a_{I}}^{+} . x_{k}^{\mathbb{I}} \in \mathscr{C}_{1}$. As

$$
\begin{aligned}
I \notin \mathscr{I}_{x_{k}^{\mathrm{I}}}(\text { Good }) & \Longrightarrow h_{N} \mathbf{u}_{a_{I}}^{+} \cdot x_{k}^{\mathbb{I}} \notin \mathscr{C}_{1} \\
& \Longrightarrow \mathbf{u}_{[0,1]}^{+} h_{N} \mathbf{u}_{a_{I}}^{+} \cdot x_{k}^{\mathbb{I}} \cap B_{y_{0}}\left(\varepsilon_{0}\right)=\emptyset \\
& \Longleftrightarrow h_{N} \mathbf{u}_{I}^{+} \cdot x_{k}^{\mathbb{I}} \cap B_{y_{0}}\left(\varepsilon_{0}\right)=\emptyset .
\end{aligned}
$$

Thus,

$$
\operatorname{Leb}\left\{t \in[0,1] \mid \mathbf{a}_{T} \mathbf{u}_{t}^{+} \cdot x \notin B_{y_{0}}\left(\varepsilon_{0}\right)\right\}>1-\frac{\# \mathscr{I}_{x_{k}^{\pi}}(\text { Good })}{N} .
$$

Combined with Equa.(3) (note that $\frac{1}{2} \log (N)>T_{0}$),

$$
\begin{aligned}
& 1-\delta_{0}>1-\frac{\# \mathscr{I}_{x_{k}^{\mathbb{I}}}(\text { Good })}{N} \\
\Longrightarrow & \frac{\#\left\{F \in \mathscr{E}_{k+1} \mid F \subset E\right\}}{N}=\frac{\# \mathscr{I}_{x_{k}^{\mathbb{\pi}}}(\operatorname{Good})}{N}>\delta_{0} .
\end{aligned}
$$

By Lemma 1.3 and Lemma 1.6, we have

$$
\operatorname{dim}_{H}(\mathbf{B A D}) \geq \operatorname{dim}_{H}\left(E_{\infty}\right) \geq 1-\frac{\log \left(\delta_{0}^{-1}\right)}{\log (N)}
$$

Letting $N \rightarrow+\infty$, we get

$$
\operatorname{dim}_{H}(\mathbf{B A D}) \geq 1
$$

Remark 1.8. You can also show that $\operatorname{dim}_{H}\left(E_{\infty}\right)$ is strictly smaller than 1.

References

[KM96] D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Sinaŭ's Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, vol. 171, Amer. Math. Soc., Providence, RI, 1996, pp. 141-172. MR 13590981
[Mat95] Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995, Fractals and rectifiability. MR 13338901
[McM87] Curt McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc. 300 (1987), no. 1, 329-342. MR 8716791

[^0]: ${ }^{1}$ A sequence of measures $\left(\mu_{n}\right)$ converges to μ under the weak* topology iff $\int f(x) \mu_{n}(x)$ converges to $\int f(x) \mu(x)$ for every continuous function f on $[0,1]$.
 ${ }^{2}$ For a topological space X, let $C(X)$ denote the Banach space of continuous functions on X equipped with the sup-norm.

