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Notation15

1. Lecture 3, Hausdorff dimension of BAD16

Reference: See [Mat95] for more on Hausdorff dimensions. The main result in this17

lecture follows [KM96]. Lemma 1.3 is taken from [McM87].18

1.1. Prelude. When a set has Lebesgue measure zero, there is a more refined way of19

measuring its size: Hausdorff dimension. A Lebesgue-null subset of [0, 1) could have20

dimension from 0 to 1. The classical Cantor’s middle third set has Hausdorff dimension21
log 2
log 3 . In this lecture we will show that the set of badly approximable numbers, which is22

small in terms of Lebesgue measure, is big in terms of Hausdorff dimension. Its Hausdorff23

dimension is equal to 1, proved by Jarnik. We are going to follow the proof by Kleinbock–24

Margulis, using the mixing property of geodesic flow to construct a Cantor-like set in25

BAD with large Hausdorff dimension.26

1.2. Hausdorff dimension. Let E ⊂ [0, 1). For s > 0 and ε > 0, define27

Hs
ε := inf

{∑
diam(Ii)

s
∣∣∣ E ⊂

⋃
Ii countable union of intervals, diam(Ii) < ε, ∀ i

}
.

For s > 0, define28

Hs(E) := lim
ε→0

Hs
ε(E).

Note that such a limit indeed exists (possibly +∞) since Hs
ε(E) is non-decreasing as ε29

decreases to 0.30

The Hausdorff dimension is defined by31

dimH(E) := inf {s ≥ 0 | Hs(E) = 0} . (1)

If non-empty (otws, dimH(E) = 0.), then one can directly check that32

dimH(E) := sup {s ≥ 0 | Hs(E) = +∞} .
From the definition, one sees that33

Lemma 1.1. Let α ∈ [0, 1] and E be a subset of [0, 1). If there exist C, ε > 0 such34

that for every covering of E by countably many intervals (Ii) with diam(Ii) < ε, one has35 ∑
diam(Ii)

α > C, then dimH(E) ≥ α.36

The main goal of this lecture is to prove that37

Theorem 1.2. The Hausdorff dimension of BAD is equal to 1.1

† Email: zhangrunlinmath@outlook.com.
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1.3. Lower bound of Hausdorff dimension. ForN ∈ Z+, let IN denote the collection2

of intervals3

IN :=

{
[
i

N
,
i+ 1

N
)

∣∣∣∣ i = 0, 1, ..., N − 1

}
.

Lemma 1.3. Fix N ∈ Z+ and δ ∈ (0, 1). Suppose that for each k ∈ Z+, we have a subset4

Ek of INk (by default, also set E0 := {[0, 1)}) satisfying5

(1) for every k ∈ Z+ and E ∈ Ek there exists E′ ∈ Ek−1 containing E;6

(2) for every k ∈ Z+ and E ∈ Ek−1,7

# {F ∈ Ek | F ⊂ E}
N

≥ 1− δ.

Let E∞ :=
⋂∞

k=1

⋃
E∈Ek

E. Then8

dimH(E∞) ≥ 1− log((1− δ)−1)

logN
.

Here is a picture of Cantor like sets...9

1.4. Convergence of measures. We claim that the “natural” probability measures10

supported on ∪E∈Ek
E converges as k → +∞ under the weak∗ topology1. By Riesz’s11

representation theorem (See Rudin’s book, real and complex analysis, Theorem 2.14.), we12

may and do specify a measure by integrating compactly supported continuous functions.13

Let f be a continuous function on [0, 1], define14

L1(f) :=
1

#E1

∑
E1∈E1

N ·
∫
E1

f(x)dx.

So this is integrating f against the normalized probability measure supported on
⊔

E∈E1
E.15

Then one “refines” this measure by16

L2(f) :=
1

#E1

∑
E1∈E1

1

#{E2 ∈ E2, E2 ⊂ E1}
∑

E2∈E2,E2⊂E1

N2 ·
∫
E2

f(x)dx.

In general, for E ∈ Ek, let17

Ek+1(E) := {F ∈ Ek+1 | F ⊂ E} .

Also, given k ∈ Z+ and E ∈ Ek, define18

E =: Ek ⊂ Ek−1 ⊂ ... ⊂ E1 ⊂ E0 := [0, 1) (2)

by requiring Ei−1 to be the unique element in Ei−1 containing Ei ∈ Ei for i = k, k−1, ..., 1.19

Further define the weight for E by20

wE :=
1

#Ek(Ek−1) ·#Ek−1(Ek−2) · ... ·#E2(E1) ·#E1
.

Now for general k ∈ Z+, a positive linear functional Lk is defined for f ∈ C[0, 1]2 by21

Lk(f) :=
∑
E∈Ek

wE ·Nk ·
∫
E

f(x)dx.

Using the fact that f ’s are uniformly continuous, one can check that1

1A sequence of measures (µn) converges to µ under the weak∗ topology iff
∫
f(x)µn(x) converges

to
∫
f(x)µ(x) for every continuous function f on [0, 1].

2For a topological space X, let C(X) denote the Banach space of continuous functions on X equipped
with the sup-norm.
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Lemma 1.4. For every f ∈ C[0, 1], the limit L∞(f) := limk→∞ Lk(f) exists and f 7→2

L∞(f) is a bounded positive linear functional on C[0, 1] mapping the constant one function3

to 1. Consequently, there exists a probability measure µ such that L∞(f) =
∫ 1

0
f(x)µ(x).4

We reserve µ for such a measure till the end of the proof of Lemma 1.3.5

1.5. Proof of Lemma 1.3. For E ∈ Ek, find E =: Ek ⊂ Ek−1 ⊂ ... ⊂ E1 ⊂ E0 := [0, 1)6

as in Equa.(2). Then µ(E) = wE . By assumption, each #Ei(E
i−1) ≥ (1−δ)N . Therefore,7

µ(E) ≤ 1

(1− δ)kNk
.

Fix a covering of E ⊂
⋃
Ii by countably many intervals. For each i, let ki be the8

unique positive integer such that9

1

Nki+1
≤ diam(Ii) <

1

Nki
.

Let Eki
(Ii) collects intervals E in Eki

with E ∩ Ii ̸= ∅. We note that10

Lemma 1.5. #Eki(Ii) ≤ 2.11

On the other hand, for E ∈ Eki
(Ii) and α ∈ [0, 1],12

µ(E) ≤ N

(1− δ)kiNki+1
≤ N diam(Ii)

α

(1− δ)kiN (ki+1)(1−α)
=

1

((1− δ)N1−α)ki
Nα diam(Ii)

α,

which is ≤ Nα diam(Ii)
α provided (1− δ)N1−α ≥ 1, or equivalently,13

α ≤ 1− log((1− δ)−1)

logN
.

Therefore, for α satisfying the inequality above,14

1 = µ(E) ≤
∑

µ(Ii) ≤
∑
i

∑
E∈Eki

(Ii)

µ(E) ≤
∑
i

2 ·Nα diam(Ii)
α

=⇒
∑

diam(Ii)
α ≥ 1

2Nα
.

As 0.5N−α is a positive constant independent of the covering (Ii) chosen, this completes15

the proof of Lemma 1.3 by Lemma 1.1.16

1.6. A remark. One could have rewritten the above proof into two steps (let α < 1 −17

log((1−δ)−1)
logN ):18

(1) Construct a probability measure µ on E∞ with the property that for some C > 0,19

for every r small enough, µ((x− r, x+ r)) < Crα holds for µ almost all x;20

(2) Show that whenever a set has positive µ-measure, it must has Hausdorff dimension21

at least α.22

It turns out that the second step has a converse to it. Namely, if a set E has Hausdorff23

dimension > α, then one can find a probability measure µ supported on E (meaning,24

µ(E) = 1) such that for some C > 0, for every r small enough, µ((x − r, x + r)) < Crα25

holds for µ almost all x. This is called the Frostman Lemma.26

1.7. Construct Cantor-like sets in BAD. We give a construction of (Ek), whose27

intersections E∞ lies inside BAD. For this we start with a positive integer N and a28

compact subset C of X2. Define C ′ := u+
[−1,1].C .29

For x ∈ X2 and I = [aI , bI) ∈ IN , define30

ϕI(x) := a 1
2 logNu+

aI
.x =

[
N

1
2 0

0 N− 1
2

] [
1 aI
0 1

]
.x.

Hence31

a 1
2 logNu+

I .x = u+
[0,1).ϕI(x).

For x ∈ X2, define a subset Ix(Good) ⊂ IN by32

I ∈ Ix(Good) ⇐⇒ a 1
2 logNu+

I .x ∩ C ̸= ∅ ⇐⇒ u+
[0,1).ϕI(x) ∩ C ̸= ∅.

Thus ϕI(x) ∈ C ′ if I ∈ Ix(Good).1
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1.7.1. Initial steps. Let x0 := Z2, we define E1 := Ix0(Good).2

Let3

I 2
x0
(Good) :=

{
(I1, I2)

∣∣∣ I1 ∈ Ix0
(Good), I2 ∈ IϕI1

(x0)(Good)
}

For an interval I = [aI , bI), let σI be the unique (orientation-preserving) affine transfor-4

mation sending [0, 1) to [aI , bI), namely,5

σI : [0, 1) → I = [aI , bI)

t 7→ taI + (1− t)bI .

Define1

E2 :=
{
σI1(I2)

∣∣ (I1, I2) ∈ I 2
x0
(Good)

}
.
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1.7.2. In general.... Given a finite sequence I := (I1, I2, ..., Ik) of elements in IN , for3

i ∈ {1, ..., k}, let4

xI
i := ϕIi ◦ ϕIi−1 ◦ ... ◦ ϕI1(x0).

By default, set xI
0 := x0. Define, for k ∈ Z+,5

I k
x0
(Good) :=

{
I = (I1, ..., Ik)

∣∣∣ Ii ∈ IxI
i−1

(Good), ∀ i = 1, ..., N
}
,

and6

Ek :=
{
σI1 ◦ ... ◦ σIk−1

(Ik)
∣∣ (I1, ..., Ik) ∈ I k

x0
(Good)

}
.

Lemma 1.6. Given N ∈ Z+ and a compact subset C of X2. The family of sets (Ek)7

constructed above satisfy condition (1) in Lemma 1.3. And E∞ := ∩∞
k=1 ∪E∈Ek

E is8

contained in BAD.9

Proof. The first part follows from the construction. Turn to the second part. By defini-10

tion, for s ∈ Ek associated with I = (I1, ..., Ik), and for each i = 1, .., k, xI
i is contained in11

C . Also, ai1
2 logN

u+
s .x0 ⊂ u+

[0,1].x
I
i. Thus a

k
1
2 logN

u+
s .x0 ⊂ C ′.12

Now take s ∈ E∞, we have seen that ak1
2 logN

u+
s .x0 ⊂ C ′ for every k ∈ Z+. Thus13

a≥0u
+
s .x0 ⊂ a[0, 12 logN ].C

′ is bounded. By Dani correspondence, s is badly approximable.14

□15

Note that actually BAD can be written as a countable union of such E∞’s. And we16

need to choose N,C such that condition (2) from Lemma 1.3 holds for δ fixed but N17

tends to infinity.18

1.8. Consequence of mixing. Recall from lecture 2.5 we have19

Theorem 1.7. Fix y0 ∈ X2, ε0 ∈ (0, 1) and a compact subset C of X2. There exist20

δ, T > 0 and M ∈ 2Z+ such that for every x ∈ C and T ′ > T ,21 ∫ 0.5

−0.5

1By0
(ε0)(aT ′u+

t .x) dt > δ.

Fix some y0 ∈ X2 and ε0 ∈ (0, 1). Let C3 := u+
[−3,3].By0

(ε0). By Theorem 1.7, we find22

δ0 > 0, T0 > 0 such that for every T > T0 and x ∈ C3,1

Leb
{
t ∈ [−0.5, 0.5]

∣∣ aTu+
t .x ∈ By0

(ε0)
}
> δ0.
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For x ∈ C2 := u+
[−2,2].By0

(ε0), apply the above to u+
0.5.x ∈ C3 , we get2

Leb
{
t ∈ [0, 1]

∣∣ aTu+
t .x ∈ By0

(ε0)
}
> δ0, ∀T > T0. (3)

Apply the Cantor-like set construction to N with 1
2 log(N) > T0 and C := C1 :=3

u+
[−1,1].By0(ε0). For simplicity write hN := a 1

2 log(N).4

Take E ∈ Ek, we need to bound5

# {F ∈ Ek+1 | F ⊂ E}
N

from below. Recall that E is of the form σI1 ◦ ... ◦ σIk−1
(Ik) for some I = (Ii)

k
i=1 ⊂ IN .6

And if Ii = [ai, bi), we have defined7

C1 ∋ xI
k = hNu+

ak
.xI

k−1 = ... = (hNu+
ak
) · (hNu+

ak−1
) · ... · (hNu+

a1
).x0

where x0 = Z2 is the identity coset. Moreover, we have a bijection8

IxI
k
(Good) → {F ∈ Ek+1 | F ⊂ E}

I 7→ σI1 ◦ ... ◦ σIk(I).

Recall an interval I = [aI , bI) ∈ IN is contained in IxI
k
(Good) iff hNu+

aI
.xI

k ∈ C1. As9

I /∈ IxI
k
(Good) =⇒ hNu+

aI
.xI

k /∈ C1

=⇒ u+
[0,1]hNu+

aI
.xI

k ∩By0
(ε0) = ∅

⇐⇒ hNu+
I .x

I
k ∩By0

(ε0) = ∅.
Thus,10

Leb
{
t ∈ [0, 1]

∣∣ aTu+
t .x /∈ By0(ε0)

}
> 1−

#IxI
k
(Good)

N
.

Combined with Equa.(3) (note that 1
2 log(N) > T0),11

1− δ0 > 1−
#IxI

k
(Good)

N

=⇒ # {F ∈ Ek+1 | F ⊂ E}
N

=
#IxI

k
(Good)

N
> δ0.

By Lemma 1.3 and Lemma 1.6, we have12

dimH(BAD) ≥ dimH(E∞) ≥ 1− log(δ−1
0 )

log(N)
.

Letting N → +∞, we get13

dimH(BAD) ≥ 1.

Remark 1.8. You can also show that dimH(E∞) is strictly smaller than 1.14
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