LECTURE 2

RUNLIN ZHANG^{\dagger}

CONTENTS

4	Notation		
5	1. I	ecture 2, Space of lattices of \mathbb{R}^2 , Dani's correspondence and Ergodic theory	1
6	1.1.	Prelude	1
7	1.2.	Unimodular lattices in \mathbb{R}^2	1
8	1.3.	Systole function and Mahler's criterion	2
9	1.4.	Group action	3
10	1.5.	Dani correspondence	4
11	1.6.	Invariant measures on X_2	4
12	1.7.	A construction of the invariant measure	5
13	1.8.	Ergodicity and mixing	6
14	1.9.	The associated unitary representation	7
15	1.10.	Mixing of the geodesic flow	8
16	1.11.	Another proof of Leb(BAD) being zero	9
17	Refer	ences	10

NOTATION

¹⁹ Vectors in \mathbb{R}^n , by default, are written as column vectors. For a few $\mathbf{x}_1, ..., \mathbf{x}_k$, write ²⁰ $(\mathbf{x}_1, ..., \mathbf{x}_k)$ for the *n*-by-*k* matrix whose i-th column is given by \mathbf{x}_i . We use I₂ to denote ²¹ the two-by-two identity matrix.

22 1. Lecture 2, Space of lattices of \mathbb{R}^2 , Dani's correspondence and Ergodic 23 Theory

One may consult Cassels' book [Cas59] for facts about lattices in \mathbb{R}^n . For an introduction to ergodic theory, we recommend Einsiedler–Ward's book [EW11]. The proof of mixing of the geodesic flow is taken from Witte Morris' excellent book [Mor15]. For relation between Khintchine's theorem and exponential mixing, which is not discussed here, see the work of Kleinbock–Margulis [KM99]. The interaction between homogeneous dynamics and Diophantine approximation (especially the metric aspects) is very fruitful. See [Kle23] for a survey.

1.1. **Prelude.** Certain problems in Diophantine approximations can be restated in terms of lattices in \mathbb{R}^n (the study of such objects is called "geometry of numbers"). Rather than studying individual lattices one-by-one, it is fruitful to study all lattices at the same time. It turns out that this space allows the transitive action of a linear group. Hence tools from linear algebra can be applied. Moreover, this (non-compact) space has a finite invariant measure. Therefore, tools from ergodic theory kick in.

Towards the end of this lecture, we will provide an alternative proof of **BAD** having zero Lebesgue measure from this point of view.

39 1.2. Unimodular lattices in \mathbb{R}^2 .

1

2

3

18

Definition 1.1. A discrete subgroup $\Lambda \leq \mathbb{R}^2$ is said to be a **lattice** iff there exists linearly independent $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ such that $\Lambda = \mathbb{Z}\mathbf{v} + \mathbb{Z}\mathbf{w}$. The co-volume of a lattice, denoted as $\|\Lambda\|$, is defined to be $|\det(\mathbf{v}, \mathbf{w})| = \|\mathbf{v} \wedge \mathbf{w}\|$. A lattice is said to be **unimodular** iff its co-volume is equal to one.

44 **Definition 1.2.** Let X_2 denote the set of all unimodular lattices in \mathbb{R}^2 .

[†] Email: zhangrunlinmath@outlook.com.

1 **Lemma 1.3.** Let Λ be a lattice of \mathbb{R}^2 and $F \subset \mathbb{R}^2$ be a Borel subset. If $F \cap (F + \mathbf{v}) = \emptyset$ 2 for every nonzero $\mathbf{v} \in \Lambda$, then $\operatorname{Leb}(F) \leq ||\Lambda||$. On the other hand, if $\mathbb{R}^2 = \bigcup_{\mathbf{v} \in \Lambda} F + \mathbf{v}$, 3 then $\operatorname{Leb}(F) \geq ||\Lambda||$.

4 If both conditions are met, we call F a strict fundamental domain of Λ .

⁵ Proof. Note that there exists a strict fundamental domain F_0 for Λ with $\operatorname{Leb}(F_0) = ||\Lambda||$. ⁶ For instance, if $\Lambda = \mathbb{Z}\mathbf{v} + \mathbb{Z}\mathbf{w}$, then F_0 can be taken to be $[0, 1)\mathbf{v} + [0, 1)\mathbf{w}$. Let $F_{\mathbf{v}} := F \cap$ ⁷ $(F_0 - \mathbf{v})$ for $\mathbf{v} \in \Lambda$. Then $F = \bigsqcup_{\mathbf{v} \in \Lambda} F_{\mathbf{v}}$ and hence $\operatorname{Leb}(F) = \sum \operatorname{Leb}(F_{\mathbf{v}}) = \sum \operatorname{Leb}(F_{\mathbf{v}} + \mathbf{v})$. ⁸ First assume $F \cap (F + \mathbf{v}) = \emptyset$ for every nonzero $\mathbf{v} \in \Lambda$. Then $(F_{\mathbf{v}} + \mathbf{v})_{\mathbf{v} \in \Lambda}$ are disjoint ⁹ from each other since $(F + \mathbf{v})$'s are. So

$$\operatorname{Leb}(F) = \sum \operatorname{Leb}(F_{\mathbf{v}} + \mathbf{v}) \le \operatorname{Leb}(F_0) = 1.$$

10 Next assume
$$\mathbb{R}^2 = \bigcup_{\mathbf{v} \in \Lambda} F + \mathbf{v}$$
. Then $\bigcup F_{\mathbf{v}} + \mathbf{v} = F$. Thus

$$\operatorname{Leb}(F) = \sum \operatorname{Leb}(F_{\mathbf{v}} + \mathbf{v}) \ge \operatorname{Leb}(F_0) = 1.$$

11

We equip X₂ with the following topology: A subset $U \subset X_2$ is open iff for every $\Lambda \in U$, say $\Lambda = \mathbb{Z}\mathbf{v} + \mathbb{Z}\mathbf{w}$, there exists $\varepsilon > 0$ such that every unimodular lattice $\Lambda' = \mathbb{Z}\mathbf{v}' + \mathbb{Z}\mathbf{w}'$ with $\|\mathbf{v} - \mathbf{v}'\| < \varepsilon$, $\|\mathbf{w} - \mathbf{w}'\| < \varepsilon$ belongs to U. Equivalently, we equip X₂ with the Chabauty topology.

¹⁶ Lemma 1.4. X₂ is a separable metrizable space.

There are different ways of showing X_2 is metrizable. For instance, one can show that for every $\Lambda = \mathbb{Z}\mathbf{v} + \mathbb{Z}\mathbf{w} \in X_2$ and every $\varepsilon > 0$, there exists $\Lambda' = \mathbb{Z}\mathbf{v}' + \mathbb{Z}\mathbf{w}' \in X_2$ with $\|\mathbf{v}' - \mathbf{v}\|, \|\mathbf{w}' - \mathbf{w}\| < \varepsilon$ and $\mathbf{v}', \mathbf{w}' \in \mathbb{Q}^2$. This would imply that X_2 is regular (every xand every neighborhood \mathcal{N} of x, there exists a smaller one whose closure is contained in \mathcal{N}) and has a countable basis (countably many open subsets that 1. cover X_2 , and 2.any intersection of two containing some x contains a third one containing the same x). Then invoke Urysohn's metrization theorem.

Note that there exist distinct $\Lambda, \Lambda' \in X_2$ such that for every $\varepsilon > 0$, there exist $\mathbf{v}, \mathbf{w}, \mathbf{w}, \mathbf{w}'$ with $\Lambda = \mathbb{Z}\mathbf{v} + \mathbb{Z}\mathbf{w}$ and $\mathbf{v}', \mathbf{w}' \in \Lambda'$ such that $\|\mathbf{v} - \mathbf{v}'\| < \varepsilon$, $\|\mathbf{w} - \mathbf{w}'\| < \varepsilon$. However, it is not clear to me whether one can further require \mathbf{v}', \mathbf{w}' to form a \mathbb{Z} -basis of Λ' .

28 1.3. Systole function and Mahler's criterion.

29 **Definition 1.5.** For a lattice Λ , let sys $(\Lambda) := \inf_{\mathbf{v}\neq\mathbf{0}\in\Lambda} \|\mathbf{v}\|$.

30 Lemma 1.6. sys : $X_2 \rightarrow \mathbb{R}_{>0}$ is a continuous function.

Theorem 1.7. sys : $X_2 \to \mathbb{R}_{>0}$ is a bounded proper continuous function.

Proof. It suffices to show that, given $c_0 > 0$, for every sequence $(\Lambda_n) \subset X_2$ with sys $(\Lambda_n) > 0$

 c_0 for all n, there exists a convergent subsequence. It suffices, for every $\Lambda \in X_2$ with

³⁴ sys(Λ) > c_0 , to find a constant C > 1 (depending on c_0) such that $\Lambda = \mathbb{Z}\mathbf{v} + \mathbb{Z}\mathbf{w}$ for some ³⁵ $\|\mathbf{v}\|, \|\mathbf{w}\| < C$.

Now fix such a c_0 and Λ . Let $\mathbf{v}_0 \in \Lambda$ be such that

$$\|\mathbf{v}_0\| = \inf \{\|\mathbf{x}\| \mid \mathbf{x} \in \Lambda \setminus \{\mathbf{0}\} \}.$$

37 Once \mathbf{v}_0 is found, let $\mathbf{w}_0 \in \Lambda^1$ be such that

 $\operatorname{dist}(\mathbf{w}_0, \mathbb{R}\mathbf{v}_0) = \inf \left\{ \operatorname{dist}(\mathbf{x}, \mathbb{R}\mathbf{v}_0) \mid \mathbf{x} \in \Lambda \setminus \mathbb{R}\mathbf{v}_0 \right\}.$

Note that $\Lambda = \mathbb{Z}\mathbf{v}_0 + \mathbb{Z}\mathbf{w}_0$. Indeed, if $\Lambda = \mathbb{Z}\mathbf{v}_1 + \mathbb{Z}\mathbf{w}_1$ then $\mathbf{v}_0 = a\mathbf{v}_1 + b\mathbf{w}_1$ with gcd(a, b) = bcd(a, b)

39 1. Then there exists $\mathbf{w}'_0 \in \Lambda$ such that $\Lambda = \mathbb{Z}\mathbf{v}_0 + \mathbb{Z}\mathbf{w}'_0$. Write $\mathbf{w}_0 = c\mathbf{v}_0 + d\mathbf{w}'_0$, then it

follows from the definition that $d = \pm 1$. So \mathbf{w}'_0 can be written as integral combinations

41 of \mathbf{v}_0 and \mathbf{w}_0 . Thus $\Lambda = \mathbb{Z}\mathbf{v}_0 + \mathbb{Z}\mathbf{w}_0$.

It remains to give an upper bound on $\|\mathbf{v}_0\|$ and dist $(\mathbf{w}_0, \mathbb{R}\mathbf{v}_0)$ in terms of c_0 (replacing w₀ by $\mathbf{w}_0 - n\mathbf{v}_0$ for suitable n_0 would give an upper bound for $\|\mathbf{w}_0\|$).

¹As remarked by H.Li, one can simply take \mathbf{w}_0 to be any vector such that $\Lambda = \mathbb{Z}\mathbf{v}_0 + \mathbb{Z}\mathbf{w}_0$. As the covolume of Λ is one, the distance from \mathbf{w}_0 to $\mathbb{R}\mathbf{v}_0$ must be bounded from above. This gives a shorter proof.

Let $F := [0,2) \times [0,2)$. Then Leb(F) > 1. By Lemma 1.3, for some non-zero $\mathbf{v} \in \Lambda$, $\mathbf{v} + F \cap F \neq \emptyset$. In other words, $\mathbf{v} = \mathbf{x}_1 - \mathbf{x}_2$ for some $\mathbf{x}_i \in F$. Thus

$$\|\mathbf{v}_0\| \le \|\mathbf{v}\| \le 2\sqrt{2}.$$

³ Also note that $\Lambda \cap \mathbb{R}\mathbf{v}_0 = \mathbb{Z}\mathbf{v}_0$ (such \mathbf{v}_0 is called primitive).

Pick some unit vector \mathbf{y}_0 orthogonal to \mathbf{v}_0 . Let $F' := (0,1)\mathbf{v}_0 + (0,C)\mathbf{y}_0$ with $C := \frac{2}{c_0}$. Then

Leb
$$(F') = \frac{2 \|\mathbf{v}_0\|}{c_0} > 1.$$

6 Thus we find some non-zero $\mathbf{w} \in (F' - F') \cap \Lambda$. Hence $\mathbf{w} = w_1 \mathbf{v}_0 + w_2 \mathbf{y}_0$ for some 7 $w_1 \in (-1, 1)$ and $w_2 \in (-C, C)$. If $w_2 = 0$, then w_1 has to be integral, so is also 0. This 8 contradicts against the fact that \mathbf{w} is nonzero. So $\mathbf{w} \notin \mathbb{R}\mathbf{v}_0$. Moreover,

dist
$$(\mathbf{w}_0, \mathbb{R}\mathbf{v}_0) \le$$
dist $(\mathbf{w}, \mathbb{R}\mathbf{v}_0) = |w_2| \le C = \frac{2}{c_0}$

9 So we are done.

10 Corollary 1.8. X_2 is non-compact.

A subset B of X_2 is said to be **bounded** iff there exists c > 0 such that $sys(\Lambda) > c$ for every $\Lambda \in B$. Otherwise we say that B is **unbounded**. So a subset is bounded iff it is precompact by Mahler's criterion.

A sequence $(x_n)_{n\in\mathbb{Z}^+}$ (or a subset indexed by positive real numbers $(x_t)_{t\in\mathbb{R}^+}$) in a topological space X is said to be **divergent** iff $\lim_{n\to+\infty} \operatorname{sys}(x_n) = 0$ (resp. $\lim_{t\to+\infty} = 0$). By Mahler's criterion, $(x_n)_{n\in\mathbb{Z}^+}$ is divergent iff for any compact subset $C \subset X$, there exists N such that for every n > N or every t > N, $x_n \notin C$.

18 1.4. Group action. The set $SL_2(\mathbb{R}) := \{2\text{-by-}2 \text{ matrices with determinant } 1\}$ is natu-19 rally a topological space (subspace topology from \mathbb{R}^4) as well as a group (matrix multi-20 plication). It is a **topological group** since

$$\begin{aligned} \mathbf{SL}_2(\mathbb{R}) \times \mathbf{SL}_2(\mathbb{R}) &\to \mathbf{SL}_2(\mathbb{R}) \\ (g,h) &\mapsto gh \end{aligned}$$

and $g \mapsto g^{-1}$ from $\mathbf{SL}_2(\mathbb{R})$ to itself are continuous.

The group $\mathbf{SL}_2(\mathbb{R})$ acts on X_2 by $(g, \Lambda) \mapsto g\Lambda := \{g\mathbf{v}, \mathbf{v} \in \Lambda\}$. The action is continuous in the sense that

$$\mathbf{SL}_2(\mathbb{R}) imes \mathrm{X}_2 o \mathrm{X}_2$$
 $(g, \Lambda) \mapsto g\Lambda$

24 is continuous.

Lemma 1.9. The map $g \mapsto g.\mathbb{Z}^2$ from $\mathbf{SL}_2(\mathbb{R})$ to X_2 is continuous and open. Moreover, it factors through a a homeomorphism $\mathbf{SL}_2(\mathbb{R})/\mathbf{SL}_2(\mathbb{Z}) \to X_2$.

There are a few subgroups of $\mathbf{SL}_2(\mathbb{R})$ that we are particularly interested in. First,

$$\mathbf{U}^+ := \left\{ \mathbf{u}_t^+ := \left[\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right] \middle| t \in \mathbb{R} \right\}$$

is a one-parameter subgroup (that is, $t \mapsto \mathbf{u}_t^+$ from $(\mathbb{R}, +)$ to U⁺ gives an isomorphism of

topological groups) consist of unipotent matrices. Its action on X₂ is sometimes referred
as a horocycle/unipotent flow. Also,

$$\mathbf{A} := \left\{ \mathbf{a}_t := \left[\begin{array}{cc} e^t & 0\\ 0 & e^{-t} \end{array} \right] \ \middle| \ t \in \mathbb{R} \right\}$$

 $_{31}$ is a one-parameter subgroup consisting of diagonal matrices. Its action on X_2 is sometimes

32 called a geodesic/diagonal flow.

1 1.4.1. An explicit metric on X_2 . Once we realize X_2 as a homogeneous space, we can 2 equip it with a metric as follows.

For $A \in \mathbf{SL}_2(\mathbb{R})$, let $||A||_{op}$ denotes the operator norm w.r.t. Euclidean norm:

$$\|A\|_{\mathrm{op}} := \sup_{\mathbf{v}_{\neq 0} \in \mathbb{R}^2} \frac{\|A.\mathbf{v}\|}{\|\mathbf{v}\|}.$$

⁴ Define a metric on $\mathbf{SL}_2(\mathbb{R})$ by

dist
$$(g,h) := \log \left\{ 1 + \left\| gh^{-1} - I_2 \right\|_{\text{op}} + \left\| hg^{-1} - I_2 \right\|_{\text{op}} \right\}$$

5 Once can verify that $\operatorname{dist}(g\gamma, h\gamma)$ for every $\gamma \in \operatorname{\mathbf{SL}}_2(\mathbb{R})$. Then,

$$\operatorname{dist}(g\mathbb{Z}^2, h\mathbb{Z}^2) := \inf \left\{ \operatorname{dist}(g, h\gamma) \mid \gamma \in \mathbf{SL}_2(\mathbb{Z}) \right\}$$

- 6 define a metric on $\mathbf{SL}_2(\mathbb{R})/\mathbf{SL}_2(\mathbb{Z})$.
- 7 1.5. Dani correspondence. For a real number α , let

$$\Lambda_{\alpha} := \mathbb{Z} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \mathbb{Z} \begin{bmatrix} \alpha \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix} \mathbb{Z}^2 = \mathbf{u}_{\alpha}^+ \mathbb{Z}^2,$$

- \ast a unimodular lattice (in X₂).
- Lemma 1.10 (Dani correspondence). A real number α is badly approximable iff (a_tΛ_α)_{t>0}
 is bounded in X₂.
- 11 Note that for every α , the full orbit $(\mathbf{a}_t \Lambda_\alpha)_{t \in \mathbb{R}}$ is unbounded. Actually, $(\mathbf{a}_t \Lambda_\alpha)$ as 12 $t \to -\infty$ diverges.
- 13 Proof. For every $(x, y)^{\text{tr}} \in \mathbf{a}_t \Lambda_{\alpha}$, there exists $(m, n) \in \mathbb{Z}^2$ such that

$$\left[\begin{array}{c} x\\ y\end{array}\right] = \left[\begin{array}{c} e^t(m+n\alpha)\\ e^{-t}n\end{array}\right]$$

14 So for $\varepsilon > 0$, sys $(\mathbf{a}_t \Lambda_{\alpha}) \ge \varepsilon$ iff for every $(m, n) \in \mathbb{Z}^2 \setminus \{\mathbf{0}\}$,

$$e^t(m+n\alpha) \ge \varepsilon, \ e^{-t}n \ge \varepsilon.$$
 (1)

Assume α is bad, namely, there exists $c_0 \in (0, 1)$ such that for every $(p, q) \in \mathbb{Z}^2$ with $q \neq 0, |q| |p + q\alpha| > c_0$. So for $\mathbf{0} \neq (x, y)^{\text{tr}} = (e^t(m + n\alpha), e^{-t}n)^{\text{tr}} \in \mathbf{a}_t \Lambda_\alpha$, if $y \neq 0$, then

$$|xy| = |n||m + n\alpha| > c_0$$
, implying $(x^2 + y^2)^{\frac{1}{2}} \ge \sqrt{2|xy|} > \sqrt{2c_0}$.

If y = 0, then $(x, y)^{\text{tr}} = (e^t m, 0)^{\text{tr}}$. Hence $||(x, y)^{\text{tr}}|| \ge 1$. Anyway, we have shown that every non-zero vector has norm at least $\sqrt{c_0}$.

¹⁹ Conversely, suppose $sys(\mathbf{a}_t \Lambda_{\alpha}) > c_1 > 0$ for all t > 0. For every $(p,q) \in \mathbb{Z}^2$ with q > 0, ²⁰ take $t_q > 0$ such that $e^{t_q} = \frac{2q}{c_1}$. Then, $\|(e^{t_q}(p+q\alpha), e^{-t_q}q)\| \ge c_1$ by Equa.(1). But

$$|e^{-t}q|^2 \le \frac{c_1^2}{4}$$

21 So

$$|e^{t_q}(p+q\alpha)| \ge \frac{\sqrt{3}}{2}c_1 \implies q |p+q\alpha| \ge \frac{\sqrt{3}}{4}c_1^2.$$

²² The proof is now complete.

23

24 1.6. Invariant measures on X_2 .

Definition 1.11. Let $f: X \to Y$ be a continuous map between two topological spaces Xand Y. Given a measure μ on (X, \mathscr{B}_X) (\mathscr{B}_X is the Borel σ -algebra, the smallest σ -algebra containing all open subsets), we define $f_*\mu$ to be a measure on Y by $f_*\mu(E) := \mu(f^{-1}(E))$ for every $E \in \mathscr{B}_Y$. If X = Y and $f_*\mu = \mu$, we say that f preserves the measure μ . If Gis a group acting on X by homeomorphisms such that $g_*\mu = \mu$ for every $g \in G$, then we say that μ is G-invariant.

31 Lemma 1.12. There exists a locally finite $SL_2(\mathbb{R})$ -invariant measure m_{X_2} on X_2 .

There are different ways to see the existence of m_{X_2} . For instance, one may equip $\mathbf{SL}_2(\mathbb{R})$ with a right invariant Riemannian metric and then $\mathbf{SL}_2(\mathbb{R})/\mathbf{SL}_2(\mathbb{Z})$ will inherit a Riemannian metric. One can check that the volume form induced from such a metric is $\mathbf{SL}_2(\mathbb{R})$ -invariant. We will give an explicit construction of an invariant measure on $\mathbf{SL}_2(\mathbb{R})$ and then induce one on the quotient space in the next subsection. What is less trivial is that:

⁷ Theorem 1.13. m_{X_2} is a finite measure.

- 8 A proof will probably be given in next lecture.
- Henceforth, we normalize m_{X_2} to be a **probability measure**, namely, $m_{X_2}(X_2) = 1$.

10 1.7. A construction of the invariant measure.

11 1.7.1. Explicit construction of invariant measures on $SL_2(\mathbb{R})$. Let

$$\mathcal{O}_1 := \left\{ \left[\begin{array}{cc} x & y \\ z & w \end{array} \right] \in \mathbf{SL}_2(\mathbb{R}) \ \middle| \ x \neq 0 \right\}, \quad \mathcal{O}_2 := \left\{ \left[\begin{array}{cc} x & y \\ z & w \end{array} \right] \in \mathbf{SL}_2(\mathbb{R}) \ \middle| \ z \neq 0 \right\}$$

¹² They can be parametrized by domains in Euclidean spaces. The φ_i 's below are homeo-¹³ morphisms:

$$\mathcal{O}'_1 := \left\{ (x, y, z) \in \mathbb{R}^3 \mid x \neq 0 \right\} \xrightarrow{\varphi_1} \mathcal{O}_1$$

$$\mathcal{O}'_2 := \left\{ (x, z, w) \in \mathbb{R}^3 \mid z \neq 0 \right\} \xrightarrow{\varphi_2} \mathcal{O}_2$$

14 where

$$\varphi_1(x,y,z) := \begin{bmatrix} x & y \\ z & \frac{1+yz}{x} \end{bmatrix}, \ \varphi_2(x,z,w) := \begin{bmatrix} x & \frac{xw-1}{z} \\ z & w \end{bmatrix}$$

15 Lemma 1.14. The map $\varphi_{12}(x, y, z) := (x, z, \frac{1+yz}{x})$ from $\{(x, y, z) \in \mathcal{O}_1, z \neq 0\}$ to 16 $\{(x, z, w) \in \mathcal{O}_2, x \neq 0\}$ sends $(\varphi_{12})_* \left| \frac{\mathrm{dxdyd}z}{x} \right| = \left| \frac{\mathrm{dxdzdw}}{z} \right|$. Therefore

$$(\varphi_1)_* \left| \frac{\mathrm{dxdydz}}{x} \right| = (\varphi_2)_* \left| \frac{\mathrm{dxdzdw}}{z} \right|$$

17 defines a locally finite measure on $\mathbf{SL}_2(\mathbb{R})$. Also note that $\{(x, y, z) \in \mathcal{O}_1, z = 0\}$ has 18 measure zero under $\left|\frac{\mathrm{dxdydz}}{x}\right|$. Similarly $\{(x, z, w) \in \mathcal{O}_2, x = 0\}$ has measure zero under 19 $\left|\frac{\mathrm{dxdzdw}}{z}\right|$.

20 Proof. Direct calculation. Note that by differentiating xw - yz = 1, one obtains wdx + z1 xdw = ydz + zdy.

- Let $m_{\mathbf{SL}_2(\mathbb{R})}$ denote this measure.
- 23 1.7.2. Invariance property. Define

$$\mathbf{U}^+ := \left\{ \mathbf{u}_t^+ := \left[\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right] \middle| t \in \mathbb{R} \right\}.$$

24 and

$$\mathbf{U}^{-} := \left\{ \mathbf{u}_{t}^{-} := \left[\begin{array}{cc} 1 & 0 \\ t & 1 \end{array} \right] \middle| t \in \mathbb{R} \right\}.$$

Lemma 1.15.
$$SL_2(\mathbb{R})$$
 is generated by the two subgroups U⁺ and U⁻

²⁶ *Proof.* Left as exercise.

²⁷ By restricting to \mathcal{O}_1 or \mathcal{O}_2 respectively, it is easy to verify that

Lemma 1.16. $m_{\mathbf{SL}_2(\mathbb{R})}$ is invariant under the left multiplication by $\mathbf{SL}_2(\mathbb{R})$.

 $_{29}$ By similar reasoning², using additionally

$$\mathcal{O}_3 := \left\{ \left[\begin{array}{cc} x & y \\ z & w \end{array} \right] \in \mathbf{SL}_2(\mathbb{R}) \mid y \neq 0 \right\},$$

 $_{30}$ one can show that

²Alternatively, as remarked by H.Li, one can verify the invariance of measure under the transpose map on \mathcal{O}_1 . Then right invariance then follows from the left invariance. We will make use of this symmetry again later.

1 Lemma 1.17. $m_{\mathbf{SL}_2(\mathbb{R})}$ is also invariant under the right multiplication by $\mathbf{SL}_2(\mathbb{R})$.

² 1.7.3. Strict fundamental domain. A Borel subset $\mathcal{F} \subset \mathbf{SL}_2(\mathbb{R})$ is said to be a strict ³ fundamental domain for $\mathbf{SL}_2(\mathbb{Z})$ iff

$$\mathbf{SL}_2(\mathbb{R}) = \bigsqcup_{\gamma \in \mathbf{SL}_2(\mathbb{Z})} \mathcal{F} \cdot \gamma.$$

4 Lemma 1.18. Strict fundamental domain exists.

5 Proof. First we choose a small open neighborhood \mathcal{N} of identity in $\mathbf{SL}_2(\mathbb{R})$ such that 6 $\mathcal{N}\gamma \cap \mathcal{N} = \emptyset$ for all non-identity element γ in $\mathbf{SL}_2(\mathbb{Z})$. Then choose a sequence $(g_n) \subset$ 7 $\mathbf{SL}_2(\mathbb{R})$ such that

$$\mathbf{SL}_2(\mathbb{R}) = \bigcup g_n \cdot \mathcal{N}.$$

8 Then we define

$$egin{aligned} V_1 &:= g_1 \mathcal{N} \ V_2 &:= g_2 \mathcal{N} \setminus g_1 \mathcal{N} \Gamma \ V_3 &:= g_3 \mathcal{N} \setminus (g_1 \mathcal{N} \Gamma \cup g_2 \mathcal{N} \Gamma) \end{aligned}$$

9 From the definition, V_2 is in the complement of $V_1\Gamma$, V_3 is in the complement of $(V_1 \cup$

¹⁰ V_2) Γ Therefore, $V_i \cap V_j \gamma = \emptyset$ for every $i \neq j$ and $\gamma \in \Gamma$. Moreover, by the choice of \mathcal{N} ,

11 $V_i \cap V_i \gamma = \emptyset$ for non-identity $\gamma \in \mathbf{SL}_2(\mathbb{Z})$. Thus if we let

$$\mathcal{F} := \bigcup_{i=1}^{\infty} V_i,$$

12 then $\mathcal{F} \cap \mathcal{F} \gamma = \emptyset$ for every $\gamma_{\neq \mathrm{id}} \in \mathbf{SL}_2(\mathbb{Z})$. On the other hand, for $g \in \mathbf{SL}_2(\mathbb{R})$, if n_g is the 13 smallest positive integer n such that $g \in g_n \mathcal{N} \Gamma$, then $g \in V_{n_g} \Gamma \subset \mathcal{F} \Gamma$ by the definition of 14 V_n 's.

15 1.7.4. The invariant measure on the quotient. Fix some strict fundamental domain \mathcal{F} , 16 let $\mathfrak{m}_{\mathcal{F}}$ be the restriction of $\mathfrak{m}_{\mathbf{SL}_2(\mathbb{R})}$ to \mathcal{F} . Let $\pi : \mathbf{SL}_2(\mathbb{R}) \to \mathbf{SL}_2(\mathbb{R})/\mathbf{SL}_2(\mathbb{Z})$ be the 17 natural quotient and let $\pi_{\mathcal{F}}$ denote the induced bijection $\mathcal{F} \to \mathbf{SL}_2(\mathbb{R})/\mathbf{SL}_2(\mathbb{Z})$. Let 18 $\mathfrak{m}_{[\mathcal{F}]} := (\pi_{\mathcal{F}})_* \mathfrak{m}_{\mathcal{F}}$.

19 Lemma 1.19. If $\mathcal{O} \subset SL_2(\mathbb{R})$ is such that π restricted to \mathcal{O} is injective, then

$$(\pi_{\mathcal{O}})_*(\mathbf{m}_{\mathbf{SL}_2(\mathbb{R})}|_{\mathcal{O}}) = \mathbf{m}_{[\mathcal{F}]}|_{\pi(\mathcal{O})}.$$

²⁰ Consequently, $m_{[\mathcal{F}]}$ is independent of the choice of strict fundamental domain and $m_{[\mathcal{F}]}$ ²¹ is invariant under the left action of $\mathbf{SL}_2(\mathbb{R})$.

Proof. It suffices to show $m_{\mathbf{SL}_2(\mathbb{R})}(\mathcal{O}) = m_{\mathbf{SL}_2(\mathbb{R})}(\pi_{\mathcal{F}}^{-1}(\pi(\mathcal{O})))$ for every such \mathcal{O} as in the statement.

For every $\gamma \in \mathbf{SL}_2(\mathbb{Z})$, let

$$\mathcal{O}_{\gamma} := \left\{ x \in \mathcal{O} \mid x\gamma \in \mathcal{F} \right\}.$$

By assumption, elements from $(\mathcal{O}_{\gamma})_{\gamma \in \mathbf{SL}_2(\mathbb{Z})}$ or $(\mathcal{O}_{\gamma} \cdot \gamma)_{\gamma \in \mathbf{SL}_2(\mathbb{Z})}$ are disjoint from each other. Hence

$$m_{\mathbf{SL}_{2}(\mathbb{R})}(\mathcal{O}) = m_{\mathbf{SL}_{2}(\mathbb{R})}(\mathcal{O}_{\gamma}) = m_{\mathbf{SL}_{2}(\mathbb{R})}(\mathcal{O}_{\gamma} \cdot \gamma) = m_{\mathcal{F}}(\mathcal{O}).$$

27

34

This finishes the proof of Lemma 1.12. The local finiteness also follows from the lemma above and the fact that $m_{SL_2(\mathbb{R})}$ is locally finite.

³¹ Definition 1.20. The action of $A \curvearrowright (X_2, m_{X_2})$ is said to be

- ergodic iff for every Borel subset $B \subset X_2$ that is A-invariant (i.e., a.B = B for every $a \in A$), one has $m_{X_2}(B) = 0$ or $m_{X_2}(X_2 \setminus B) = 0$;
 - mixing iff for every divergent sequence $(a_n) \in A$ and Borel subsets B, C, one has

$$\lim_{n \to \infty} \operatorname{m}_{\operatorname{X}_2}(B \cap a_n^{-1}.C) = \operatorname{m}_{\operatorname{X}_2}(B)\operatorname{m}_{\operatorname{X}_2}(C)$$

35 Lemma 1.21. Mixing implies ergodicity.

1 Proof. Indeed, let B be an A-invariant subset and let (a_n) be a divergent sequence in A. 2 Then by mixing,

$$\lim_{n \to \infty} \operatorname{m}_{\operatorname{X}_2}(B \cap a_n^{-1}.B) = \operatorname{m}_{\operatorname{X}_2}(B)^2.$$

³ By A-invariance, the left hand side is $m_{X_2}(B)$. Then $m_{X_2}(B)^2 = m_{X_2}(B)$ implies ⁴ $m_{X_2}(B) = 0$ or 1. So we are done.

- 5 We are going to prove that the A-action on X₂ is mixing via a little functional analysis.
- ⁶ Theorem 1.22. The action of $A \curvearrowright (X_2, m_{X_2})$ is mixing.
- 7 1.9. The associated unitary representation. Let

$$\begin{split} L^{2}(X_{2}, m_{X_{2}}) &:= \left\{ f: X_{2} \to \mathbb{C} \text{ measurable } \left| \int |f|^{2} m_{X_{2}} < +\infty \right\}; \\ L^{2}_{0}(X_{2}, m_{X_{2}}) &:= \left\{ f \in L^{2}(X_{2}, m_{X_{2}}) \; \middle| \; \int f m_{X_{2}} = 0 \right\}. \end{split}$$

* (note that L^2 functions are in L^1 since m_{X_2} is finite) with inner product denoted by

$$\langle f,g\rangle:=\int_{\mathcal{X}_2}f(x)\overline{g(x)}\mathbf{m}_{\mathcal{X}_2}(x)$$

9 where \overline{b} denotes the complex conjugate of a complex number b. Also, $||f||_2 := \sqrt{\langle f, f \rangle}$.

As usual, we identify two functions $f, g \in L^2_0(X_2, m_{X_2})$ if they are equal almost surely. Then $L^2_0(X_2, m_{X_2})$ with this inner product is a separable (i.e., has a countable dense subset) Hilbert space.

Note that the $\mathbf{SL}_2(\mathbb{R})$ action on (X_2, m_{X_2}) induces an action of $\mathbf{SL}_2(\mathbb{R})$ on $L_0^2(X_2, m_{X_2})$ defined by

$$U_q f(x) := f(g^{-1}x).$$

15 Lemma 1.23. The action has the following properties:

16 1. for each $g \in \mathbf{SL}_2(\mathbb{R}), U_g : L^2_0(X_2, m_{X_2}) \to L^2_0(X_2, m_{X_2})$ is a unitary operator;

17 2. for every $\varepsilon > 0$ and $f \in L^2_0(X_2, m_{X_2})$, there exists a neighborhood $\mathcal{O}_{\varepsilon}$ of the 18 identity matrix in $\mathbf{SL}_2(\mathbb{R})$ such that for every $g \in \mathcal{O}_{\varepsilon}$,

$$\|U_g f - f\|_2 \le \varepsilon.$$

Proof. Take $g \in \mathbf{SL}_2(\mathbb{R})$. Since the action of g preserves m_{X_2} , we have $\int f(gx)m_{X_2}(x) = \int f(x)m_{X_2}(x)$ for every integrable function f. For $\phi \in L^2(X_2, m_{X_2})$, by applying this equality to $f = |\phi|^2$, we see that $||U_g\phi||_2 = ||\phi||_2$.

For the second part, note that the set $C_c(X_2)$ of compactly supported functions are dense in $L^2(X_2, m_{X_2})$ (for instance, see Theorem 3.14 in Rudin's book Real and complex analysis).

For every $\varepsilon > 0$ and $f \in L^2(X_2, m_{X_2})$, find $\phi \in C_c(X_2)$ such that $\|\phi - f\|_2 \leq 0.1\varepsilon$. Since ϕ is uniformly continuous, find $\delta > 0$ such that $d(x, y) < \delta \implies |\phi(x) - \phi(y)| < 0.1\varepsilon$. Fix a relatively compact neighborhood of identity \mathcal{O}_0 . Then $\overline{\mathcal{O}_0^{-1}}$. $\operatorname{supp}(\phi)$ is still compact. Thus, we can find $\mathcal{O}_{\varepsilon} \subset \mathcal{O}_0$, a neighborhood of the identity, such that for every $g \in \mathcal{O}_{\varepsilon}$ and $x \in C := \overline{\mathcal{O}_0^{-1}}$. $\operatorname{supp}(\phi) \cup \operatorname{supp}(\phi)$,

$$|\phi(gx) - \phi(x)| < 0.1\varepsilon.$$

30 Consequently,

$$\int_{\mathcal{X}_2} |\phi(gx) - \phi(x)|^2 \, \mathbf{m}_{\mathcal{X}_2}(x) = \int_C |\phi(gx) - \phi(x)|^2 \, \mathbf{m}_{\mathcal{X}_2}(x) \le (0.1\varepsilon)^2,$$

implying $||U_g \phi - \phi||_2 < 0.1\varepsilon.$

31 Therefore, for $g \in \mathcal{O}_{\varepsilon}$

$$||U_g f - f||_2 \le ||U_g \phi - \phi||_2 + ||U_g \phi - U_g f|| + ||g - f|| \le 0.1\varepsilon + 0.1\varepsilon + 0.1\varepsilon < \varepsilon.$$

32 So the proof completes.

1 1.10. Mixing of the geodesic flow. In this subsection we prove Theorem 1.22. We 2 need to show that for $\phi, \psi \in L^2_0(X_2, m_{X_2})$ and a divergence sequence $(a_n) \in A^+$ (namely, 3 assume the (1, 1) entries of matrices a_n diverge to $+\infty$. The other case when they diverge 4 to $-\infty$ is similar), one has

$$\lim_{n \to \infty} \langle U_{a_n} \phi, \psi \rangle = 0.$$

5 For simplicity write $L_0^2 := L_0^2(X_2, m_{X_2})$.

6 1.10.1. The basics. As L_0^2 is separable, by applying a diagonal argument, we assume that

$$\lim_{n \to \infty} \langle U_{a_{n_k}} \phi, \psi \rangle \text{ exists, } \forall \phi, \psi \in \mathcal{L}^2_0$$

⁷ for some subsequence n_k . It suffices to show that for this subsequence, the limit above is ⁸ zero for every $\phi, \psi \in L_0^2$.

9 For each $\phi \in L^2_0$, the map $\psi \mapsto \lim_{n \to \infty} \langle U_{a_{n_k}} \phi, \psi \rangle$ is conjugate-linear and bounded 10 since

$$\left|\lim_{n \to \infty} \langle U_{a_{n_k}} \phi, \psi \rangle \right| = \lim_{n \to \infty} \left| \langle U_{a_{n_k}} \phi, \psi \rangle \right| \le \|\phi\|_2 \|\psi\|_2.$$

¹¹ By Riesz's lemma, there exists some element in L_0^2 , denoted as $E(\phi)$, such that $\langle E(\phi), \psi \rangle =$ ¹² $\lim_{n \to \infty} \langle U_{a_{n_k}} \phi, \psi \rangle$ for every $\psi \in L_0^2$.

Next we note that $\phi \mapsto E(\phi)$ is a bounded operator. Linearity is clear. To show that it is bounded, apply the computation above to $\psi := E(\phi)$,

$$\|E(\phi)\|_{2}^{2} = \langle E(\phi), E(\phi) \rangle \le \|\phi\|_{2} \|E(\phi)\|_{2} \implies \|E(\phi)\|_{2} \le \|\phi\|_{2}.$$

15 Let E^* be the adjoint operator of E, then

$$\langle E^*\phi,\psi\rangle=\lim_{n\to\infty}\langle U_{a_{n_k}^{-1}}\phi,\psi\rangle.$$

¹⁶ 1.10.2. Almost invariant functions are constants. Next we are going to show that the ¹⁷ image of E is fixed by $\mathbf{SL}_2(\mathbb{R})$ and is hence zero by the following lemma

Lemma 1.24. Let $f \in L_0^2$. If for every $g \in \mathbf{SL}_2(\mathbb{R})$, f(g.x) = f(x) for almost every $x \in X_2$, then f is a constant function a.e.

20 Proof. Consider the set

$$F := \{ (g, x) \in \mathbf{SL}_2(\mathbb{R}) \mid f(g.x) \neq f(x) \}.$$

21 By Fubini theorem, m_{X2}(F) = 0. Let $F_x := \{g \in \mathbf{SL}_2(\mathbb{R}) \mid f(g.x) \neq f(x)\}$. Apply Fubini 22 again

$$\mathbf{m}_{\mathbf{X}_{2}}(F) = \int_{x \in \mathbf{X}_{2}} \mathbf{m}_{\mathbf{SL}_{2}(\mathbb{R})} (F_{x}) \mathbf{m}_{\mathbf{X}_{2}}(x)$$

23 So there exists $x_0 \in X_2$ such that for almost all $g \in \mathbf{SL}_2(\mathbb{R})$, $f(g.x_0) = f(x_0)$. Thus f is 24 equal to $f(x_0)$ a.e.

Actually, one only needs to show the invariance by the following two special subgroups.
 Recall

$$\mathbf{U}^{+} := \left\{ \mathbf{u}_{t}^{+} := \left[\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right] \middle| t \in \mathbb{R} \right\}.$$
$$\mathbf{U}^{-} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \middle| t = \mathbb{R} \right\}.$$

27 and

$$\mathbf{U}^{-} := \left\{ \mathbf{u}_{t}^{-} := \left[\begin{array}{c} 1 & 0 \\ t & 1 \end{array} \right] \middle| t \in \mathbb{R} \right\}.$$

- Also recall from Lemma 1.15 that $\mathbf{SL}_2(\mathbb{R})$ is generated by U⁺ and U⁻.
- ²⁹ 1.10.3. The easy part. For simplicity we assume $n_k = k$.
- $_{30}$ Elements from U⁺ and U⁻ enjoy the following properties

$$\lim_{n \to \infty} a_n^{-1} u a_n = \mathbf{I}_2, \ \forall \, u \in \mathbf{U}^+, \quad \lim_{n \to \infty} a_n v a_n^{-1} = \mathbf{I}_2, \ \forall \, v \in \mathbf{U}^-.$$

Combined with Lemma 1.23, for an element $u \in U^+$, one gets

$$\begin{split} \langle U_u E(\phi), \psi \rangle &= \lim_{n \to \infty} \langle U_u U_{a_n} \phi, \psi \rangle = \lim_{n \to \infty} \langle U_{a_n^{-1} u a_n} \phi, U_{a_n^{-1}} \psi \rangle \\ &= \lim_{n \to \infty} \langle \phi, U_{a_n^{-1}} \psi \rangle = \langle E(\phi), \psi \rangle. \end{split}$$

so for all $\phi, \psi \in L^2_0$. Thus $U_u \circ E = E$.

Similarly, for $v \in U^-$, one has $U_v \circ E^* = E^*$.

- 1 1.10.4. *The trick.*
- ² Lemma 1.25. Let E, E^* be as above. Then $\ker(E) = \ker(E^*)$.
- 3 Note that in general the kernel of a linear operator is not the same as its adjoint.

Proof.

4

$$\begin{split} \langle E(\phi), E(\phi) \rangle &= \lim_{n \to \infty} \langle U_{a_n} \phi, E(\phi) \rangle \\ &= \lim_{n \to \infty} \lim_{m \to \infty} \langle U_{a_n} \phi, U_{a_m} \phi \rangle \\ &= \lim_{n \to \infty} \lim_{m \to \infty} \langle U_{a_m^{-1}} \phi, U_{a_n^{-1}} \phi \rangle = \langle E^*(\phi), E^*(\phi) \rangle. \end{split}$$

⁵ By result in last subsubsection, $E \circ (U_v - I_2) = 0$ for every $v \in U^-$. By the lemma, ⁶ $E^* \circ (U_v - I_2) = 0$. Taking the adjoint, we get $U_v \circ E = E$. So we are done.

7 1.11. Another proof of Leb(BAD) being zero. Now we give an alternative proof
8 of the fact that the set of badly approximable numbers has Lebesgue measure zero. We
9 assume Leb(BAD) > 0 and derive a contradiction.

10 We fix some $\varepsilon > 0$ and let

$$\mathcal{O}_{\varepsilon} := \left\{ \begin{bmatrix} e^s & 0 \\ 0 & e^{-s} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} . \mathbb{Z}^2 \mid s, t \in (-\varepsilon, \varepsilon), \ r \in (0, 1] \right\}$$
$$= \mathbf{a}_{(-\varepsilon, \varepsilon)} \mathbf{u}_{(-\varepsilon, \varepsilon)}^- \mathbf{u}_{(0, 1]}^+ . \mathbb{Z}^2.$$

11 Let $Obt : \mathbf{SL}_2(\mathbb{R}) \to X_2$ defined by $g \mapsto g.\mathbb{Z}^2$.

12 Lemma 1.26. There exists a continuous positive function $\varphi : (-\varepsilon, \varepsilon) \times (-\varepsilon, \varepsilon) \times (0, 1) \rightarrow \mathbb{R}$ 13 such that

$$m_{X_2}|_{\mathcal{O}_{\varepsilon}} = Obt_* (\varphi|dsdtdr|).$$

14 For $n \in \mathbb{Z}^+$, define

$$\mathbf{BAD}_n := \left\{ r \in \mathbf{BAD}, \ \mathrm{sys}(\mathbf{a}_t.\Lambda_r) \ge \frac{1}{n}, \ \forall t > 0 \right\}$$

¹⁵ By Dani correspondence, **BAD** = $\bigcup_{n \in \mathbb{Z}^+} \mathbf{BAD}_n$. Thus $\operatorname{Leb}(\mathbf{BAD}_{n_0}) > 0$ for some ¹⁶ $n_0 \in \mathbb{Z}^+$. Let $\mathcal{O}_{\varepsilon}(\mathbf{BAD}_{n_0})$ be the subset of $\mathcal{O}_{\varepsilon}$ where $r \in \mathbf{BAD}_{n_0}$. By Lemma 1.26,

$$m_{X_2}(\mathcal{O}_{\varepsilon}(\mathbf{BAD}_{n_0})) > 0$$

17 Let

$$B_n := \overline{\bigcup_{s \ge n} \mathbf{a}_s.\mathcal{O}_{\varepsilon}(\mathbf{BAD}_{n_0})}$$
$$B := \bigcap_{n \in \mathbb{Z}^+} B_n = \left\{ x = \lim_{n \to \infty} \mathbf{a}_{s_n}.x_n \text{ for some } (s_n) \to +\infty, \ \{x_n\} \subset \mathcal{O}_{\varepsilon}(\mathbf{BAD}_{n_0}) \right\}$$

18 Since each B_n contains $\mathbf{a}_s . \mathcal{O}_{\varepsilon}(\mathbf{BAD}_{n_0})$ for some s, we have

$$m_{X_2}(B_n) \ge m_{X_2}\left(\mathbf{a}_s.\mathcal{O}_{\varepsilon}(\mathbf{BAD}_{n_0})\right) = m_{X_2}(\mathcal{O}_{\varepsilon}(\mathbf{BAD}_{n_0}))$$

19 for every *n*. Hence $m_{X_2}(B) \ge m_{X_2}(\mathcal{O}_{\varepsilon}(\mathbf{BAD}_{n_0})) > 0$.

On the other hand, B is A-invariant. By ergodicity, B has full measure in X_2 . But B_{21} is bounded, as it is contained in (check this!)

$$\mathbf{a}_{(-\varepsilon,\varepsilon)}$$
. $\left\{\Lambda \in \mathbf{X}_2, \ \mathrm{sys}(\Lambda) \geq \frac{1}{n_0}\right\}$.

22 This is a contradiction.

1		References
2	[Cas 59]	J. W. S. Cassels, An introduction to the geometry of numbers, Die Grundlehren der mathematis-
3		chen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungs-
4		gebiete, vol. Bd. 99, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959. MR 157947 1
5	[EW11]	Manfred Einsiedler and Thomas Ward, Ergodic theory with a view towards number theory, Grad-
6		uate Texts in Mathematics, vol. 259, Springer-Verlag London, Ltd., London, 2011. MR 2723325
7		1
8	[Kle23]	Dmitry Kleinbock, Ergodic theory on homogeneous spaces and metric number theory, Ergodic
9		theory, Encycl. Complex. Syst. Sci., Springer, New York, [2023] ©2023, pp. 597–613. MR 4647091
10		1
11	[KM99]	D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent.
12		Math. 138 (1999), no. 3, 451–494. MR 1719827 1
13	[Mor15]	Dave Witte Morris, Introduction to arithmetic groups, Deductive Press, [place of publication
14	. ,	not identified], 2015. MR 3307755 1