Notation 1

1. Lecture 2, Space of lattices of \mathbb{R}^{2}, Dani's correspondence and Ergodic theory 1
1.1. Prelude 1
1.2. Unimodular lattices in \mathbb{R}^{2} 1
1.3. Systole function and Mahler's criterion 2
1.4. Group action 3
1.5. Dani correspondence 4
1.6. Invariant measures on X_{2} 4
1.7. A construction of the invariant measure 5
1.8. Ergodicity and mixing 6
1.9. The associated unitary representation 7
1.10. Mixing of the geodesic flow 8
1.11. Another proof of $\mathrm{Leb}(\mathrm{BAD})$ being zero 9
References 10

Notation

Vectors in \mathbb{R}^{n}, by default, are written as column vectors. For a few $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$, write $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$ for the n-by- k matrix whose i-th column is given by \mathbf{x}_{i}. We use I_{2} to denote the two-by-two identity matrix.

1. Lecture 2, Space of lattices of \mathbb{R}^{2}, Dani's correspondence and Ergodic THEORY

One may consult Cassels' book [Cas59] for facts about lattices in \mathbb{R}^{n}. For an introduction to ergodic theory, we recommend Einsiedler-Ward's book [EW11]. The proof of mixing of the geodesic flow is taken from Witte Morris' excellent book [Mor15]. For relation between Khintchine's theorem and exponential mixing, which is not discussed here, see the work of Kleinbock-Margulis [KM99]. The interaction between homogeneous dynamics and Diophantine approximation (especially the metric aspects) is very fruitful. See [Kle23] for a survey.
1.1. Prelude. Certain problems in Diophantine approximations can be restated in terms of lattices in \mathbb{R}^{n} (the study of such objects is called "geometry of numbers"). Rather than studying individual lattices one-by-one, it is fruitful to study all lattices at the same time. It turns out that this space allows the transitive action of a linear group. Hence tools from linear algebra can be applied. Moreover, this (non-compact) space has a finite invariant measure. Therefore, tools from ergodic theory kick in.

Towards the end of this lecture, we will provide an alternative proof of BAD having zero Lebesgue measure from this point of view.

1.2. Unimodular lattices in \mathbb{R}^{2}.

Definition 1.1. A discrete subgroup $\Lambda \leq \mathbb{R}^{2}$ is said to be a lattice iff there exists linearly independent $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ such that $\Lambda=\mathbb{Z} \mathbf{v}+\mathbb{Z} \mathbf{w}$. The co-volume of a lattice, denoted as $\|\Lambda\|$, is defined to be $|\operatorname{det}(\mathbf{v}, \mathbf{w})|=\|\mathbf{v} \wedge \mathbf{w}\|$. A lattice is said to be unimodular iff its co-volume is equal to one.
Definition 1.2. Let X_{2} denote the set of all unimodular lattices in \mathbb{R}^{2}.
† Email: zhangrunlinmath@outlook.com.

Lemma 1.3. Let Λ be a lattice of \mathbb{R}^{2} and $F \subset \mathbb{R}^{2}$ be a Borel subset. If $F \cap(F+\mathbf{v})=\emptyset$ for every nonzero $\mathbf{v} \in \Lambda$, then $\operatorname{Leb}(F) \leq\|\Lambda\|$. On the other hand, if $\mathbb{R}^{2}=\bigcup_{\mathbf{v} \in \Lambda} F+\mathbf{v}$, then $\operatorname{Leb}(F) \geq\|\Lambda\|$.

If both conditions are met, we call F a strict fundamental domain of Λ.
Proof. Note that there exists a strict fundamental domain F_{0} for Λ with $\operatorname{Leb}\left(F_{0}\right)=\|\Lambda\|$. For instance, if $\Lambda=\mathbb{Z} \mathbf{v}+\mathbb{Z} \mathbf{w}$, then F_{0} can be taken to be $[0,1) \mathbf{v}+[0,1) \mathbf{w}$. Let $F_{\mathbf{v}}:=F \cap$ $\left(F_{0}-\mathbf{v}\right)$ for $\mathbf{v} \in \Lambda$. Then $F=\bigsqcup_{\mathbf{v} \in \Lambda} F_{\mathbf{v}}$ and hence $\operatorname{Leb}(F)=\sum \operatorname{Leb}\left(F_{\mathbf{v}}\right)=\sum \operatorname{Leb}\left(F_{\mathbf{v}}+\mathbf{v}\right)$.

First assume $F \cap(F+\mathbf{v})=\emptyset$ for every nonzero $\mathbf{v} \in \Lambda$. Then $\left(F_{\mathbf{v}}+\mathbf{v}\right)_{\mathbf{v} \in \Lambda}$ are disjoint from each other since $(F+\mathbf{v})$'s are. So

$$
\operatorname{Leb}(F)=\sum \operatorname{Leb}\left(F_{\mathbf{v}}+\mathbf{v}\right) \leq \operatorname{Leb}\left(F_{0}\right)=1
$$

Next assume $\mathbb{R}^{2}=\bigcup_{\mathbf{v} \in \Lambda} F+\mathbf{v}$. Then $\bigcup F_{\mathbf{v}}+\mathbf{v}=F$. Thus

$$
\operatorname{Leb}(F)=\sum \operatorname{Leb}\left(F_{\mathbf{v}}+\mathbf{v}\right) \geq \operatorname{Leb}\left(F_{0}\right)=1
$$

We equip X_{2} with the following topology: A subset $U \subset \mathrm{X}_{2}$ is open iff for every $\Lambda \in U$, say $\Lambda=\mathbb{Z} \mathbf{v}+\mathbb{Z} \mathbf{w}$, there exists $\varepsilon>0$ such that every unimodular lattice $\Lambda^{\prime}=\mathbb{Z} \mathbf{v}^{\prime}+\mathbb{Z} \mathbf{w}^{\prime}$ with $\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|<\varepsilon,\left\|\mathbf{w}-\mathbf{w}^{\prime}\right\|<\varepsilon$ belongs to U. Equivalently, we equip X_{2} with the Chabauty topology.
Lemma 1.4. X_{2} is a separable metrizable space.
There are different ways of showing X_{2} is metrizable. For instance, one can show that for every $\Lambda=\mathbb{Z} \mathbf{v}+\mathbb{Z} \mathbf{w} \in \mathrm{X}_{2}$ and every $\varepsilon>0$, there exists $\Lambda^{\prime}=\mathbb{Z} \mathbf{v}^{\prime}+\mathbb{Z} \mathbf{w}^{\prime} \in \mathrm{X}_{2}$ with $\left\|\mathbf{v}^{\prime}-\mathbf{v}\right\|,\left\|\mathbf{w}^{\prime}-\mathbf{w}\right\|<\varepsilon$ and $\mathbf{v}^{\prime}, \mathbf{w}^{\prime} \in \mathbb{Q}^{2}$. This would imply that X_{2} is regular (every x and every neighborhood \mathcal{N} of x, there exists a smaller one whose closure is contained in $\mathcal{N})$ and has a countable basis (countably many open subsets that 1 . cover X_{2}, and 2.any intersection of two containing some x contains a third one containing the same x). Then invoke Urysohn's metrization theorem.

Note that there exist distinct $\Lambda, \Lambda^{\prime} \in \mathrm{X}_{2}$ such that for every $\varepsilon>0$, there exist $\mathbf{v}, \mathbf{w}, \mathbf{w}, \mathbf{w}^{\prime}$ with $\Lambda=\mathbb{Z} \mathbf{v}+\mathbb{Z} \mathbf{w}$ and $\mathbf{v}^{\prime}, \mathbf{w}^{\prime} \in \Lambda^{\prime}$ such that $\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|<\varepsilon,\left\|\mathbf{w}-\mathbf{w}^{\prime}\right\|<\varepsilon$. However, it is not clear to me whether one can further require $\mathbf{v}^{\prime}, \mathbf{w}^{\prime}$ to form a \mathbb{Z}-basis of Λ^{\prime}.

1.3. Systole function and Mahler's criterion.

Definition 1.5. For a lattice Λ, let $\operatorname{sys}(\Lambda):=\inf _{\mathbf{v}_{\neq \mathbf{o}} \in \Lambda}\|\mathbf{v}\|$.
Lemma 1.6. sys : $\mathrm{X}_{2} \rightarrow \mathbb{R}_{>0}$ is a continuous function.
Theorem 1.7. sys : $\mathrm{X}_{2} \rightarrow \mathbb{R}_{>0}$ is a bounded proper continuous function.
Proof. It suffices to show that, given $c_{0}>0$, for every sequence $\left(\Lambda_{n}\right) \subset \mathrm{X}_{2}$ with $\operatorname{sys}\left(\Lambda_{n}\right)>$ c_{0} for all n, there exists a convergent subsequence. It suffices, for every $\Lambda \in \mathrm{X}_{2}$ with $\operatorname{sys}(\Lambda)>c_{0}$, to find a constant $C>1$ (depending on $\left.c_{0}\right)$ such that $\Lambda=\mathbb{Z} \mathbf{v}+\mathbb{Z} \mathbf{w}$ for some $\|\mathbf{v}\|,\|\mathbf{w}\|<C$.

Now fix such a c_{0} and Λ. Let $\mathbf{v}_{0} \in \Lambda$ be such that

$$
\left\|\mathbf{v}_{0}\right\|=\inf \{\|\mathbf{x}\| \mid \mathbf{x} \in \Lambda \backslash\{\mathbf{0}\}\}
$$

Once \mathbf{v}_{0} is found, let $\mathbf{w}_{0} \in \Lambda^{1}$ be such that

$$
\operatorname{dist}\left(\mathbf{w}_{0}, \mathbb{R} \mathbf{v}_{0}\right)=\inf \left\{\operatorname{dist}\left(\mathbf{x}, \mathbb{R} \mathbf{v}_{0}\right) \mid \mathbf{x} \in \Lambda \backslash \mathbb{R} \mathbf{v}_{0}\right\}
$$

Note that $\Lambda=\mathbb{Z} \mathbf{v}_{0}+\mathbb{Z} \mathbf{w}_{0}$. Indeed, if $\Lambda=\mathbb{Z} \mathbf{v}_{1}+\mathbb{Z} \mathbf{w}_{1}$ then $\mathbf{v}_{0}=a \mathbf{v}_{1}+b \mathbf{w}_{1}$ with $\operatorname{gcd}(a, b)=$ 1. Then there exists $\mathbf{w}_{0}^{\prime} \in \Lambda$ such that $\Lambda=\mathbb{Z} \mathbf{v}_{0}+\mathbb{Z} \mathbf{w}_{0}^{\prime}$. Write $\mathbf{w}_{0}=c \mathbf{v}_{0}+d \mathbf{w}_{0}^{\prime}$, then it follows from the definition that $d= \pm 1$. So \mathbf{w}_{0}^{\prime} can be written as integral combinations of \mathbf{v}_{0} and \mathbf{w}_{0}. Thus $\Lambda=\mathbb{Z} \mathbf{v}_{0}+\mathbb{Z} \mathbf{w}_{0}$.

It remains to give an upper bound on $\left\|\mathbf{v}_{0}\right\|$ and $\operatorname{dist}\left(\mathbf{w}_{0}, \mathbb{R} \mathbf{v}_{0}\right)$ in terms of c_{0} (replacing \mathbf{w}_{0} by $\mathbf{w}_{0}-n \mathbf{v}_{0}$ for suitable n_{0} would give an upper bound for $\left.\left\|\mathbf{w}_{0}\right\|\right)$.

[^0]Let $F:=[0,2) \times[0,2)$. Then $\operatorname{Leb}(F)>1$. By Lemma 1.3, for some non-zero $\mathbf{v} \in \Lambda$, $\mathbf{v}+F \cap F \neq \emptyset$. In other words, $\mathbf{v}=\mathbf{x}_{1}-\mathbf{x}_{2}$ for some $\mathbf{x}_{i} \in F$. Thus

$$
\left\|\mathbf{v}_{0}\right\| \leq\|\mathbf{v}\| \leq 2 \sqrt{2}
$$

Also note that $\Lambda \cap \mathbb{R} \mathbf{v}_{0}=\mathbb{Z} \mathbf{v}_{0}$ (such \mathbf{v}_{0} is called primitive).
Pick some unit vector \mathbf{y}_{0} orthogonal to \mathbf{v}_{0}. Let $F^{\prime}:=(0,1) \mathbf{v}_{0}+(0, C) \mathbf{y}_{0}$ with $C:=\frac{2}{c_{0}}$. Then

$$
\operatorname{Leb}\left(F^{\prime}\right)=\frac{2\left\|\mathbf{v}_{0}\right\|}{c_{0}}>1
$$

Thus we find some non-zero $\mathbf{w} \in\left(F^{\prime}-F^{\prime}\right) \cap \Lambda$. Hence $\mathbf{w}=w_{1} \mathbf{v}_{0}+w_{2} \mathbf{y}_{0}$ for some $w_{1} \in(-1,1)$ and $w_{2} \in(-C, C)$. If $w_{2}=0$, then w_{1} has to be integral, so is also 0 . This contradicts against the fact that \mathbf{w} is nonzero. So $\mathbf{w} \notin \mathbb{R} \mathbf{v}_{0}$. Moreover,

$$
\operatorname{dist}\left(\mathbf{w}_{0}, \mathbb{R} \mathbf{v}_{0}\right) \leq \operatorname{dist}\left(\mathbf{w}, \mathbb{R} \mathbf{v}_{0}\right)=\left|w_{2}\right| \leq C=\frac{2}{c_{0}}
$$

So we are done.
Corollary 1.8. X_{2} is non-compact.
A subset B of X_{2} is said to be bounded iff there exists $c>0$ such that $\operatorname{sys}(\Lambda)>c$ for every $\Lambda \in B$. Otherwise we say that B is unbounded. So a subset is bounded iff it is precompact by Mahler's criterion.

A sequence $\left(x_{n}\right)_{n \in \mathbb{Z}^{+}}$(or a subset indexed by positive real numbers $\left(x_{t}\right)_{t \in \mathbb{R}^{+}}$) in a topological space X is said to be divergent iff $\lim _{n \rightarrow+\infty} \operatorname{sys}\left(x_{n}\right)=0$ (resp. $\lim _{t \rightarrow+\infty}=$ 0). By Mahler's criterion, $\left(x_{n}\right)_{n \in \mathbb{Z}^{+}}$is divergent iff for any compact subset $C \subset X$, there exists N such that for every $n>N$ or every $t>N, x_{n} \notin C$.
1.4. Group action. The set $\mathbf{S L}_{2}(\mathbb{R}):=\{2$-by- 2 matrices with determinant 1$\}$ is naturally a topological space (subspace topology from \mathbb{R}^{4}) as well as a group (matrix multiplication). It is a topological group since

$$
\begin{aligned}
\mathbf{S L}_{2}(\mathbb{R}) \times \mathbf{S L}_{2}(\mathbb{R}) & \rightarrow \mathbf{S L}_{2}(\mathbb{R}) \\
(g, h) & \mapsto g h
\end{aligned}
$$

and $g \mapsto g^{-1}$ from $\mathbf{S L}_{2}(\mathbb{R})$ to itself are continuous.
The group $\mathbf{S L}_{2}(\mathbb{R})$ acts on X_{2} by $(g, \Lambda) \mapsto g \Lambda:=\{g \mathbf{v}, \mathbf{v} \in \Lambda\}$. The action is continuous in the sense that

$$
\begin{aligned}
\mathbf{S L}_{2}(\mathbb{R}) \times \mathrm{X}_{2} & \rightarrow \mathrm{X}_{2} \\
(g, \Lambda) & \mapsto g \Lambda
\end{aligned}
$$

is continuous.
Lemma 1.9. The map $g \mapsto g . \mathbb{Z}^{2}$ from $\mathbf{S L}_{2}(\mathbb{R})$ to X_{2} is continuous and open. Moreover, it factors through a a homeomorphism $\mathbf{S L}_{2}(\mathbb{R}) / \mathbf{S L}_{2}(\mathbb{Z}) \rightarrow \mathrm{X}_{2}$.

There are a few subgroups of $\mathbf{S L}_{2}(\mathbb{R})$ that we are particularly interested in. First,

$$
\mathrm{U}^{+}:=\left\{\mathbf{u}_{t}^{+}: \left.=\left[\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

is a one-parameter subgroup (that is, $t \mapsto \mathbf{u}_{t}^{+}$from $(\mathbb{R},+)$ to U^{+}gives an isomorphism of topological groups) consist of unipotent matrices. Its action on X_{2} is sometimes referred as a horocycle/unipotent flow. Also,

$$
\mathrm{A}:=\left\{\mathbf{a}_{t}: \left.=\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

is a one-parameter subgroup consisting of diagonal matrices. Its action on X_{2} is sometimes called a geodesic/diagonal flow.
1.4.1. An explicit metric on X_{2}. Once we realize X_{2} as a homogeneous space, we can equip it with a metric as follows.

For $A \in \mathbf{S L}_{2}(\mathbb{R})$, let $\|A\|_{\text {op }}$ denotes the operator norm w.r.t. Euclidean norm:

$$
\|A\|_{\mathrm{op}}:=\sup _{\mathbf{v} \neq 0} \in \mathbb{R}^{2} \frac{\|A \cdot \mathbf{v}\|}{\|\mathbf{v}\|}
$$

Define a metric on $\mathbf{S L}_{2}(\mathbb{R})$ by

$$
\operatorname{dist}(g, h):=\log \left\{1+\left\|g h^{-1}-\mathrm{I}_{2}\right\|_{\mathrm{op}}+\left\|h g^{-1}-\mathrm{I}_{2}\right\|_{\mathrm{op}}\right\}
$$

Once can verify that $\operatorname{dist}(g \gamma, h \gamma)$ for every $\gamma \in \mathbf{S L}_{2}(\mathbb{R})$. Then,

$$
\operatorname{dist}\left(g \mathbb{Z}^{2}, h \mathbb{Z}^{2}\right):=\inf \left\{\operatorname{dist}(g, h \gamma) \mid \gamma \in \mathbf{S L}_{2}(\mathbb{Z})\right\}
$$

define a metric on $\mathbf{S L}_{2}(\mathbb{R}) / \mathbf{S L}_{2}(\mathbb{Z})$.
1.5. Dani correspondence. For a real number α, let

$$
\Lambda_{\alpha}:=\mathbb{Z}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\mathbb{Z}\left[\begin{array}{l}
\alpha \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & \alpha \\
0 & 1
\end{array}\right] \mathbb{Z}^{2}=\mathbf{u}_{\alpha}^{+} \mathbb{Z}^{2}
$$

a unimodular lattice (in X_{2}).
Lemma 1.10 (Dani correspondence). A real number α is badly approximable iff $\left(\mathbf{a}_{t} \Lambda_{\alpha}\right)_{t>0}$ is bounded in X_{2}.

Note that for every α, the full orbit $\left(\mathbf{a}_{t} \Lambda_{\alpha}\right)_{t \in \mathbb{R}}$ is unbounded. Actually, $\left(\mathbf{a}_{t} \Lambda_{\alpha}\right)$ as $t \rightarrow-\infty$ diverges.

Proof. For every $(x, y)^{\operatorname{tr}} \in \mathbf{a}_{t} \Lambda_{\alpha}$, there exists $(m, n) \in \mathbb{Z}^{2}$ such that

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
e^{t}(m+n \alpha) \\
e^{-t} n
\end{array}\right]
$$

So for $\varepsilon>0, \operatorname{sys}\left(\mathbf{a}_{t} \Lambda_{\alpha}\right) \geq \varepsilon$ iff for every $(m, n) \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}$,

$$
\begin{equation*}
e^{t}(m+n \alpha) \geq \varepsilon, e^{-t} n \geq \varepsilon \tag{1}
\end{equation*}
$$

Assume α is bad, namely, there exists $c_{0} \in(0,1)$ such that for every $(p, q) \in \mathbb{Z}^{2}$ with $q \neq 0,|q||p+q \alpha|>c_{0}$. So for $\mathbf{0} \neq(x, y)^{\operatorname{tr}}=\left(e^{t}(m+n \alpha), e^{-t} n\right)^{\operatorname{tr}} \in \mathbf{a}_{t} \Lambda_{\alpha}$, if $y \neq 0$, then

$$
|x y|=|n||m+n \alpha|>c_{0}, \text { implying }\left(x^{2}+y^{2}\right)^{\frac{1}{2}} \geq \sqrt{2|x y|}>\sqrt{2 c_{0}}
$$

If $y=0$, then $(x, y)^{\operatorname{tr}}=\left(e^{t} m, 0\right)^{\operatorname{tr}}$. Hence $\left\|(x, y)^{\operatorname{tr}}\right\| \geq 1$. Anyway, we have shown that every non-zero vector has norm at least $\sqrt{c_{0}}$.

Conversely, suppose sys $\left(\mathbf{a}_{t} \Lambda_{\alpha}\right)>c_{1}>0$ for all $t>0$. For every $(p, q) \in \mathbb{Z}^{2}$ with $q>0$, take $t_{q}>0$ such that $e^{t_{q}}=\frac{2 q}{c_{1}}$. Then, $\left\|\left(e^{t_{q}}(p+q \alpha), e^{-t_{q}} q\right)\right\| \geq c_{1}$ by Equa.(1). But

$$
\left|e^{-t} q\right|^{2} \leq \frac{c_{1}^{2}}{4}
$$

So

$$
\left|e^{t_{q}}(p+q \alpha)\right| \geq \frac{\sqrt{3}}{2} c_{1} \Longrightarrow q|p+q \alpha| \geq \frac{\sqrt{3}}{4} c_{1}^{2}
$$

The proof is now complete.

1.6. Invariant measures on X_{2}.

Definition 1.11. Let $f: X \rightarrow Y$ be a continuous map between two topological spaces X and Y. Given a measure μ on $\left(X, \mathscr{B}_{X}\right)\left(\mathscr{B}_{X}\right.$ is the Borel σ-algebra, the smallest σ-algebra containing all open subsets), we define $f_{*} \mu$ to be a measure on Y by $f_{*} \mu(E):=\mu\left(f^{-1}(E)\right)$ for every $E \in \mathscr{B}_{Y}$. If $X=Y$ and $f_{*} \mu=\mu$, we say that f preserves the measure μ. If G is a group acting on X by homeomorphisms such that $g_{*} \mu=\mu$ for every $g \in G$, then we say that μ is G-invariant.
Lemma 1.12. There exists a locally finite $\mathbf{S L}_{2}(\mathbb{R})$-invariant measure $\mathrm{m}_{\mathrm{X}_{2}}$ on X_{2}.

There are different ways to see the existence of $\mathrm{m}_{\mathrm{X}_{2}}$. For instance, one may equip $\mathbf{S L}_{2}(\mathbb{R})$ with a right invariant Riemannian metric and then $\mathbf{S L}_{2}(\mathbb{R}) / \mathbf{S L}_{2}(\mathbb{Z})$ will inherit a Riemannian metric. One can check that the volume form induced from such a metric is $\mathbf{S L}_{2}(\mathbb{R})$-invariant. We will give an explicit construction of an invariant measure on $\mathbf{S L}_{2}(\mathbb{R})$ and then induce one on the quotient space in the next subsection. What is less trivial is that:

Theorem 1.13. $\mathrm{m}_{\mathrm{X}_{2}}$ is a finite measure.
A proof will probably be given in next lecture.
Henceforth, we normalize $\mathrm{m}_{\mathrm{X}_{2}}$ to be a probability measure, namely, $\mathrm{m}_{\mathrm{X}_{2}}\left(\mathrm{X}_{2}\right)=1$.

1.7. A construction of the invariant measure.

1.7.1. Explicit construction of invariant measures on $\mathbf{S L}_{2}(\mathbb{R})$. Let

$$
\mathcal{O}_{1}:=\left\{\left.\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right] \in \mathbf{S L}_{2}(\mathbb{R}) \right\rvert\, x \neq 0\right\}, \quad \mathcal{O}_{2}:=\left\{\left.\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right] \in \mathbf{S L}_{2}(\mathbb{R}) \right\rvert\, z \neq 0\right\}
$$

They can be parametrized by domains in Euclidean spaces. The φ_{i} 's below are homeomorphisms:

$$
\begin{aligned}
& \mathcal{O}_{1}^{\prime}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \neq 0\right\} \underset{\simeq}{\stackrel{\varphi_{1}}{\simeq}} \mathcal{O}_{1} \\
& \mathcal{O}_{2}^{\prime}:=\left\{(x, z, w) \in \mathbb{R}^{3} \mid z \neq 0\right\} \xrightarrow[\simeq]{\varphi_{2}} \mathcal{O}_{2}
\end{aligned}
$$

14
where

$$
\varphi_{1}(x, y, z):=\left[\begin{array}{cc}
x & y \\
z & \frac{1+y z}{x}
\end{array}\right], \varphi_{2}(x, z, w):=\left[\begin{array}{cc}
x & \frac{x w-1}{z} \\
z & w
\end{array}\right]
$$

Lemma 1.14. The map $\varphi_{12}(x, y, z):=\left(x, z, \frac{1+y z}{x}\right)$ from $\left\{(x, y, z) \in \mathcal{O}_{1}, z \neq 0\right\}$ to $\left\{(x, z, w) \in \mathcal{O}_{2}, x \neq 0\right\}$ sends $\left(\varphi_{12}\right)_{*}\left|\frac{\mathrm{dxdydz}}{x}\right|=\left|\frac{\mathrm{dxdzdw}}{z}\right|$. Therefore

$$
\left(\varphi_{1}\right)_{*}\left|\frac{\mathrm{dxdydz}}{x}\right|=\left(\varphi_{2}\right)_{*}\left|\frac{\mathrm{dxdzdw}}{z}\right|
$$

defines a locally finite measure on $\mathbf{S L}_{2}(\mathbb{R})$. Also note that $\left\{(x, y, z) \in \mathcal{O}_{1}, z=0\right\}$ has measure zero under $\left|\frac{\text { dxdydz }}{x}\right|$. Similarly $\left\{(x, z, w) \in \mathcal{O}_{2}, x=0\right\}$ has measure zero under $\left|\frac{\mathrm{dxdzdw}}{z}\right|$.
Proof. Direct calculation. Note that by differentiating $x w-y z=1$, one obtains $w \mathrm{dx}+$ $x \mathrm{dw}=y \mathrm{dz}+z \mathrm{dy}$.

Let $\mathrm{m}_{\mathbf{S L}_{2}(\mathbb{R})}$ denote this measure.
1.7.2. Invariance property. Define

$$
\mathrm{U}^{+}:=\left\{\mathbf{u}_{t}^{+}: \left.=\left[\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

and

$$
\mathrm{U}^{-}:=\left\{\mathbf{u}_{t}^{-}: \left.=\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

Lemma 1.15. $\mathbf{S L}_{2}(\mathbb{R})$ is generated by the two subgroups U^{+}and U^{-}.
Proof. Left as exercise.
By restricting to \mathcal{O}_{1} or \mathcal{O}_{2} respectively, it is easy to verify that
Lemma 1.16. $\mathrm{m}_{\mathbf{S L}_{2}(\mathbb{R})}$ is invariant under the left multiplication by $\mathbf{S L}_{2}(\mathbb{R})$.
By similar reasoning ${ }^{2}$, using additionally

$$
\mathcal{O}_{3}:=\left\{\left.\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right] \in \mathbf{S L}_{2}(\mathbb{R}) \right\rvert\, y \neq 0\right\}
$$

one can show that

[^1]Lemma 1.17. $\mathrm{m}_{\mathbf{S L}_{2}(\mathbb{R})}$ is also invariant under the right multiplication by $\mathbf{S L}_{2}(\mathbb{R})$.
1.7.3. Strict fundamental domain. A Borel subset $\mathcal{F} \subset \mathbf{S L}_{2}(\mathbb{R})$ is said to be a strict fundamental domain for $\mathbf{S L}_{2}(\mathbb{Z})$ iff

$$
\mathbf{S L}_{2}(\mathbb{R})=\bigsqcup_{\gamma \in \mathbf{S L}_{2}(\mathbb{Z})} \mathcal{F} \cdot \gamma
$$

Lemma 1.18. Strict fundamental domain exists.
Proof. First we choose a small open neighborhood \mathcal{N} of identity in $\mathbf{S L}_{2}(\mathbb{R})$ such that $\mathcal{N} \gamma \cap \mathcal{N}=\emptyset$ for all non-identity element γ in $\mathbf{S L}_{2}(\mathbb{Z})$. Then choose a sequence $\left(g_{n}\right) \subset$ $\mathbf{S L}_{2}(\mathbb{R})$ such that

$$
\mathbf{S L}_{2}(\mathbb{R})=\bigcup g_{n} \cdot \mathcal{N}
$$

Then we define

$$
\begin{aligned}
& V_{1}:=g_{1} \mathcal{N} \\
& V_{2}:=g_{2} \mathcal{N} \backslash g_{1} \mathcal{N} \Gamma \\
& V_{3}:=g_{3} \mathcal{N} \backslash\left(g_{1} \mathcal{N} \Gamma \cup g_{2} \mathcal{N} \Gamma\right)
\end{aligned}
$$

From the definition, V_{2} is in the complement of $V_{1} \Gamma, V_{3}$ is in the complement of $\left(V_{1} \cup\right.$ $\left.V_{2}\right) \Gamma \ldots$ Therefore, $V_{i} \cap V_{j} \gamma=\emptyset$ for every $i \neq j$ and $\gamma \in \Gamma$. Moreover, by the choice of \mathcal{N}, $V_{i} \cap V_{i} \gamma=\emptyset$ for non-identity $\gamma \in \mathbf{S L}_{2}(\mathbb{Z})$. Thus if we let

$$
\mathcal{F}:=\bigcup_{i=1}^{\infty} V_{i}
$$

then $\mathcal{F} \cap \mathcal{F} \gamma=\emptyset$ for every $\gamma_{\neq \mathrm{id}} \in \mathbf{S L}_{2}(\mathbb{Z})$. On the other hand, for $g \in \mathbf{S L}_{2}(\mathbb{R})$, if n_{g} is the smallest positive integer n such that $g \in g_{n} \mathcal{N} \Gamma$, then $g \in V_{n_{g}} \Gamma \subset \mathcal{F} \Gamma$ by the definition of V_{n} 's.
1.7.4. The invariant measure on the quotient. Fix some strict fundamental domain \mathcal{F}, let $\mathrm{m}_{\mathcal{F}}$ be the restriction of $\mathrm{m}_{\mathbf{S L}_{2}(\mathbb{R})}$ to \mathcal{F}. Let $\pi: \mathbf{S L}_{2}(\mathbb{R}) \rightarrow \mathbf{S L}_{2}(\mathbb{R}) / \mathbf{S L}_{2}(\mathbb{Z})$ be the natural quotient and let $\pi_{\mathcal{F}}$ denote the induced bijection $\mathcal{F} \rightarrow \mathbf{S L}_{2}(\mathbb{R}) / \mathbf{S L}_{2}(\mathbb{Z})$. Let $\mathrm{m}_{[\mathcal{F}]}:=\left(\pi_{\mathcal{F}}\right)_{*} \mathrm{~m}_{\mathcal{F}}$.
Lemma 1.19. If $\mathcal{O} \subset \mathbf{S L}_{2}(\mathbb{R})$ is such that π restricted to \mathcal{O} is injective, then

$$
\left(\pi_{\mathcal{O}}\right)_{*}\left(\left.\mathrm{~m}_{\mathbf{S L}_{2}(\mathbb{R})}\right|_{\mathcal{O}}\right)=\left.\mathrm{m}_{[\mathcal{F}]}\right|_{\pi(\mathcal{O})}
$$

Consequently, $\mathrm{m}_{[\mathcal{F}]}$ is independent of the choice of strict fundamental domain and $\mathrm{m}_{[\mathcal{F}]}$ is invariant under the left action of $\mathbf{S L}_{2}(\mathbb{R})$.
Proof. It suffices to show $\mathrm{m}_{\mathbf{S L}_{2}(\mathbb{R})}(\mathcal{O})=\mathrm{m}_{\mathbf{S L}_{2}(\mathbb{R})}\left(\pi_{\mathcal{F}}^{-1}(\pi(\mathcal{O}))\right)$ for every such \mathcal{O} as in the statement.

For every $\gamma \in \mathbf{S L}_{2}(\mathbb{Z})$, let

$$
\mathcal{O}_{\gamma}:=\{x \in \mathcal{O} \mid x \gamma \in \mathcal{F}\}
$$

By assumption, elements from $\left(\mathcal{O}_{\gamma}\right)_{\gamma \in \mathbf{S L}_{2}(\mathbb{Z})}$ or $\left(\mathcal{O}_{\gamma} \cdot \gamma\right)_{\gamma \in \mathbf{S L}_{2}(\mathbb{Z})}$ are disjoint from each other. Hence

$$
\mathrm{m}_{\mathbf{S L}_{2}(\mathbb{R})}(\mathcal{O})=\mathrm{m}_{\mathbf{S L}_{2}(\mathbb{R})}\left(\mathcal{O}_{\gamma}\right)=\mathrm{m}_{\mathbf{S L}_{2}(\mathbb{R})}\left(\mathcal{O}_{\gamma} \cdot \gamma\right)=\mathrm{m}_{\mathcal{F}}(\mathcal{O})
$$

This finishes the proof of Lemma 1.12. The local finiteness also follows from the lemma above and the fact that $\mathrm{m}_{\mathbf{S L}_{2}(\mathbb{R})}$ is locally finite.

1.8. Ergodicity and mixing.

Definition 1.20. The action of $\mathrm{A} \curvearrowright\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)$ is said to be

- ergodic iff for every Borel subset $B \subset \mathrm{X}_{2}$ that is A -invariant (i.e., a. $B=B$ for every $a \in \mathrm{~A}$), one has $\mathrm{m}_{\mathrm{X}_{2}}(B)=0$ or $\mathrm{m}_{\mathrm{X}_{2}}\left(\mathrm{X}_{2} \backslash B\right)=0$;
- mixing iff for every divergent sequence $\left(a_{n}\right) \in \mathrm{A}$ and Borel subsets B, C, one has

$$
\lim _{n \rightarrow \infty} \mathrm{~m}_{\mathrm{X}_{2}}\left(B \cap a_{n}^{-1} \cdot C\right)=\mathrm{m}_{\mathrm{X}_{2}}(B) \mathrm{m}_{\mathrm{X}_{2}}(C)
$$

Lemma 1.21. Mixing implies ergodicity.

Proof. Indeed, let B be an A-invariant subset and let $\left(a_{n}\right)$ be a divergent sequence in A . Then by mixing,

$$
\lim _{n \rightarrow \infty} \mathrm{~m}_{\mathrm{X}_{2}}\left(B \cap a_{n}^{-1} \cdot B\right)=\mathrm{m}_{\mathrm{X}_{2}}(B)^{2}
$$

By A-invariance, the left hand side is $\mathrm{m}_{\mathrm{X}_{2}}(B)$. Then $\mathrm{m}_{\mathrm{X}_{2}}(B)^{2}=\mathrm{m}_{\mathrm{X}_{2}}(B)$ implies $\mathrm{m}_{\mathrm{X}_{2}}(B)=0$ or 1 . So we are done.

We are going to prove that the A -action on X_{2} is mixing via a little functional analysis.
Theorem 1.22. The action of $\mathrm{A} \curvearrowright\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)$ is mixing.
1.9. The associated unitary representation. Let

$$
\begin{aligned}
& \mathrm{L}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right):=\left\{f: \mathrm{X}_{2} \rightarrow \mathbb{C} \text { measurable }\left.\left|\int\right| f\right|^{2} \mathrm{~m}_{\mathrm{X}_{2}}<+\infty\right\} \\
& \mathrm{L}_{0}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right):=\left\{f \in \mathrm{~L}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right) \mid \int f \mathrm{~m}_{\mathrm{X}_{2}}=0\right\}
\end{aligned}
$$

8 (note that L^{2} functions are in L^{1} since $\mathrm{m}_{\mathrm{X}_{2}}$ is finite) with inner product denoted by

$$
\langle f, g\rangle:=\int_{\mathrm{X}_{2}} f(x) \overline{g(x)} \mathrm{m}_{\mathrm{X}_{2}}(x)
$$

where \bar{b} denotes the complex conjugate of a complex number b. Also, $\|f\|_{2}:=\sqrt{\langle f, f\rangle}$.
As usual, we identify two functions $f, g \in \mathrm{~L}_{0}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)$ if they are equal almost surely. Then $\mathrm{L}_{0}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)$ with this inner product is a separable (i.e., has a countable dense subset) Hilbert space.

Note that the $\mathbf{S L}_{2}(\mathbb{R})$ action on $\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)$ induces an action of $\mathbf{S L}_{2}(\mathbb{R})$ on $\mathrm{L}_{0}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)$ defined by

$$
U_{g} f(x):=f\left(g^{-1} x\right)
$$

Lemma 1.23. The action has the following properties:

1. for each $g \in \mathbf{S L}_{2}(\mathbb{R})$, $U_{g}: \mathrm{L}_{0}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right) \rightarrow \mathrm{L}_{0}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)$ is a unitary operator;
2. for every $\varepsilon>0$ and $f \in \mathrm{~L}_{0}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)$, there exists a neighborhood $\mathcal{O}_{\varepsilon}$ of the identity matrix in $\mathbf{S L}_{2}(\mathbb{R})$ such that for every $g \in \mathcal{O}_{\varepsilon}$,

$$
\left\|U_{g} f-f\right\|_{2} \leq \varepsilon
$$

Proof. Take $g \in \mathbf{S L}_{2}(\mathbb{R})$. Since the action of g preserves $\mathrm{m}_{\mathrm{X}_{2}}$, we have $\int f(g x) \mathrm{m}_{\mathrm{X}_{2}}(x)=$ $\int f(x) \mathrm{m}_{\mathrm{X}_{2}}(x)$ for every integrable function f. For $\phi \in \mathrm{L}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)$, by applying this equality to $f=|\phi|^{2}$, we see that $\left\|U_{g} \phi\right\|_{2}=\|\phi\|_{2}$.

For the second part, note that the set $C_{c}\left(\mathrm{X}_{2}\right)$ of compactly supported functions are dense in $\mathrm{L}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)$ (for instance, see Theorem 3.14 in Rudin's book Real and complex analysis).

For every $\varepsilon>0$ and $f \in \mathrm{~L}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)$, find $\phi \in C_{c}\left(\mathrm{X}_{2}\right)$ such that $\|\phi-f\|_{2} \leq 0.1 \varepsilon$. Since ϕ is uniformly continuous, find $\delta>0$ such that $d(x, y)<\delta \Longrightarrow|\phi(x)-\phi(y)|<0.1 \varepsilon$. Fix a relatively compact neighborhood of identity \mathcal{O}_{0}. Then $\overline{\mathcal{O}_{0}^{-1} \cdot \operatorname{supp}(\phi)}$ is still compact. Thus, we can find $\mathcal{O}_{\varepsilon} \subset \mathcal{O}_{0}$, a neighborhood of the identity, such that for every $g \in \mathcal{O}_{\varepsilon}$ and $x \in C:=\overline{\mathcal{O}_{0}^{-1} \cdot \operatorname{supp}(\phi)} \cup \operatorname{supp}(\phi)$,

$$
|\phi(g x)-\phi(x)|<0.1 \varepsilon
$$

Consequently,

$$
\begin{aligned}
& \int_{\mathrm{X}_{2}}|\phi(g x)-\phi(x)|^{2} \mathrm{~m}_{\mathrm{X}_{2}}(x)=\int_{C}|\phi(g x)-\phi(x)|^{2} \mathrm{~m}_{\mathrm{X}_{2}}(x) \leq(0.1 \varepsilon)^{2} \\
& \text { implying }\left\|U_{g} \phi-\phi\right\|_{2}<0.1 \varepsilon
\end{aligned}
$$

Therefore, for $g \in \mathcal{O}_{\varepsilon}$

$$
\left\|U_{g} f-f\right\|_{2} \leq\left\|U_{g} \phi-\phi\right\|_{2}+\left\|U_{g} \phi-U_{g} f\right\|+\|g-f\| \leq 0.1 \varepsilon+0.1 \varepsilon+0.1 \varepsilon<\varepsilon
$$

So the proof completes.
1.10. Mixing of the geodesic flow. In this subsection we prove Theorem 1.22. We need to show that for $\phi, \psi \in \mathrm{L}_{0}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)$ and a divergence sequence $\left(a_{n}\right) \in \mathrm{A}^{+}$(namely, assume the $(1,1)$ entries of matrices a_{n} diverge to $+\infty$. The other case when they diverge to $-\infty$ is similar), one has

$$
\lim _{n \rightarrow \infty}\left\langle U_{a_{n}} \phi, \psi\right\rangle=0
$$

For simplicity write $\mathrm{L}_{0}^{2}:=\mathrm{L}_{0}^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)$.
1.10.1. The basics. As L_{0}^{2} is separable, by applying a diagonal argument, we assume that

$$
\lim _{n \rightarrow \infty}\left\langle U_{a_{n_{k}}} \phi, \psi\right\rangle \text { exists, } \forall \phi, \psi \in \mathrm{L}_{0}^{2}
$$

for some subsequence n_{k}. It suffices to show that for this subsequence, the limit above is zero for every $\phi, \psi \in \mathrm{L}_{0}^{2}$.

For each $\phi \in \mathrm{L}_{0}^{2}$, the map $\psi \mapsto \lim _{n \rightarrow \infty}\left\langle U_{a_{n_{k}}} \phi, \psi\right\rangle$ is conjugate-linear and bounded since

$$
\left|\lim _{n \rightarrow \infty}\left\langle U_{a_{n_{k}}} \phi, \psi\right\rangle\right|=\lim _{n \rightarrow \infty}\left|\left\langle U_{a_{n_{k}}} \phi, \psi\right\rangle\right| \leq\|\phi\|_{2}\|\psi\|_{2} .
$$

By Riesz's lemma, there exists some element in L_{0}^{2}, denoted as $E(\phi)$, such that $\langle E(\phi), \psi\rangle=$ $\lim _{n \rightarrow \infty}\left\langle U_{a_{n_{k}}} \phi, \psi\right\rangle$ for every $\psi \in \mathrm{L}_{0}^{2}$.

Next we note that $\phi \mapsto E(\phi)$ is a bounded operator. Linearity is clear. To show that it is bounded, apply the computation above to $\psi:=E(\phi)$,

$$
\|E(\phi)\|_{2}^{2}=\langle E(\phi), E(\phi)\rangle \leq\|\phi\|_{2}\|E(\phi)\|_{2} \Longrightarrow\|E(\phi)\|_{2} \leq\|\phi\|_{2} .
$$

Let E^{*} be the adjoint operator of E, then

$$
\left\langle E^{*} \phi, \psi\right\rangle=\lim _{n \rightarrow \infty}\left\langle U_{a_{n_{k}}^{-1}} \phi, \psi\right\rangle
$$

1.10.2. Almost invariant functions are constants. Next we are going to show that the image of E is fixed by $\mathbf{S L}_{2}(\mathbb{R})$ and is hence zero by the following lemma

Lemma 1.24. Let $f \in \mathrm{~L}_{0}^{2}$. If for every $g \in \mathbf{S L}_{2}(\mathbb{R}), f(g . x)=f(x)$ for almost every $x \in \mathrm{X}_{2}$, then f is a constant function a.e.

Proof. Consider the set

$$
F:=\left\{(g, x) \in \mathbf{S L}_{2}(\mathbb{R}) \mid f(g \cdot x) \neq f(x)\right\}
$$

By Fubini theorem, $\mathrm{m}_{\mathrm{X}_{2}}(F)=0$. Let $F_{x}:=\left\{g \in \mathbf{S L}_{2}(\mathbb{R}) \mid f(g \cdot x) \neq f(x)\right\}$. Apply Fubini again

$$
\mathrm{m}_{\mathrm{X}_{2}}(F)=\int_{x \in \mathrm{X}_{2}} \mathrm{~m}_{\mathbf{S L}_{2}(\mathbb{R})}\left(F_{x}\right) \mathrm{m}_{\mathrm{X}_{2}}(x)
$$

So there exists $x_{0} \in \mathrm{X}_{2}$ such that for almost all $g \in \mathbf{S L}_{2}(\mathbb{R}), f\left(g \cdot x_{0}\right)=f\left(x_{0}\right)$. Thus f is equal to $f\left(x_{0}\right)$ a.e.

Actually, one only needs to show the invariance by the following two special subgroups. Recall

$$
\mathrm{U}^{+}:=\left\{\mathbf{u}_{t}^{+}: \left.=\left[\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\} .
$$

and

$$
\mathrm{U}^{-}:=\left\{\mathbf{u}_{t}^{-}: \left.=\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\} .
$$

Also recall from Lemma 1.15 that $\mathbf{S L}_{2}(\mathbb{R})$ is generated by U^{+}and U^{-}.
1.10.3. The easy part. For simplicity we assume $n_{k}=k$.

Elements from U^{+}and U^{-}enjoy the following properties

$$
\lim _{n \rightarrow \infty} a_{n}^{-1} u a_{n}=\mathrm{I}_{2}, \forall u \in \mathrm{U}^{+}, \quad \lim _{n \rightarrow \infty} a_{n} v a_{n}^{-1}=\mathrm{I}_{2}, \forall v \in \mathrm{U}^{-}
$$

Combined with Lemma 1.23, for an element $u \in \mathrm{U}^{+}$, one gets

$$
\begin{aligned}
\left\langle U_{u} E(\phi), \psi\right\rangle & =\lim _{n \rightarrow \infty}\left\langle U_{u} U_{a_{n}} \phi, \psi\right\rangle=\lim _{n \rightarrow \infty}\left\langle U_{a_{n}^{-1} u a_{n}} \phi, U_{a_{n}^{-1}} \psi\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle\phi, U_{a_{n}^{-1}} \psi\right\rangle=\langle E(\phi), \psi\rangle .
\end{aligned}
$$

for all $\phi, \psi \in \mathrm{L}_{0}^{2}$. Thus $U_{u} \circ E=E$.
Similarly, for $v \in \mathrm{U}^{-}$, one has $U_{v} \circ E^{*}=E^{*}$.
1.10.4. The trick.

Lemma 1.25. Let E, E^{*} be as above. Then $\operatorname{ker}(E)=\operatorname{ker}\left(E^{*}\right)$.
Note that in general the kernel of a linear operator is not the same as its adjoint.

Proof.

$$
\begin{aligned}
\langle E(\phi), E(\phi)\rangle & =\lim _{n \rightarrow \infty}\left\langle U_{a_{n}} \phi, E(\phi)\right\rangle \\
& =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty}\left\langle U_{a_{n}} \phi, U_{a_{m}} \phi\right\rangle \\
& =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty}\left\langle U_{a_{m}^{-1}} \phi, U_{a_{n}^{-1}} \phi\right\rangle=\left\langle E^{*}(\phi), E^{*}(\phi)\right\rangle .
\end{aligned}
$$

By result in last subsubsection, $E \circ\left(U_{v}-\mathrm{I}_{2}\right)=0$ for every $v \in \mathrm{U}^{-}$. By the lemma, $E^{*} \circ\left(U_{v}-\mathrm{I}_{2}\right)=0$. Taking the adjoint, we get $U_{v} \circ E=E$. So we are done.
1.11. Another proof of $\operatorname{Leb}(\mathbf{B A D})$ being zero. Now we give an alternative proof of the fact that the set of badly approximable numbers has Lebesgue measure zero. We assume $\operatorname{Leb}(\mathbf{B A D})>0$ and derive a contradiction.

We fix some $\varepsilon>0$ and let

$$
\begin{aligned}
\mathcal{O}_{\varepsilon} & :=\left\{\left.\left[\begin{array}{cc}
e^{s} & 0 \\
0 & e^{-s}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & r \\
0 & 1
\end{array}\right] \cdot \mathbb{Z}^{2} \right\rvert\, s, t \in(-\varepsilon, \varepsilon), r \in(0,1]\right\} \\
& =\mathbf{a}_{(-\varepsilon, \varepsilon)} \mathbf{u}_{(-\varepsilon, \varepsilon)}^{-} \mathbf{u}_{(0,1]}^{+} \cdot \mathbb{Z}^{2}
\end{aligned}
$$

Let Obt: $\mathbf{S L}_{2}(\mathbb{R}) \rightarrow \mathrm{X}_{2}$ defined by $g \mapsto g \cdot \mathbb{Z}^{2}$.
Lemma 1.26. There exists a continuous positive function $\varphi:(-\varepsilon, \varepsilon) \times(-\varepsilon, \varepsilon) \times(0,1) \rightarrow \mathbb{R}$ such that

$$
\left.\mathrm{m}_{\mathrm{X}_{2}}\right|_{\mathcal{O}_{\varepsilon}}=\mathrm{Obt}_{*}(\varphi|\mathrm{dsdtdr}|) .
$$

For $n \in \mathbb{Z}^{+}$, define

$$
\mathbf{B A D}_{n}:=\left\{r \in \mathbf{B A D}, \operatorname{sys}\left(\mathbf{a}_{t} \cdot \Lambda_{r}\right) \geq \frac{1}{n}, \forall t>0\right\}
$$

By Dani correspondence, $\mathbf{B A D}=\bigcup_{n \in \mathbb{Z}^{+}} \mathbf{B A D}_{n}$. Thus $\operatorname{Leb}\left(\mathbf{B A D}_{n_{0}}\right)>0$ for some $n_{0} \in \mathbb{Z}^{+}$. Let $\mathcal{O}_{\varepsilon}\left(\mathbf{B A D} n_{n_{0}}\right)$ be the subset of $\mathcal{O}_{\varepsilon}$ where $r \in \mathbf{B A D}_{n_{0}}$. By Lemma 1.26,

$$
\mathrm{m}_{\mathrm{X}_{2}}\left(\mathcal{O}_{\varepsilon}\left(\mathbf{B A D} D_{n_{0}}\right)\right)>0
$$

Let

$$
\begin{aligned}
B_{n} & :=\bigcup_{s \geq n} \mathbf{a}_{s} \cdot \mathcal{O}_{\varepsilon}\left(\mathbf{B A D} \mathbf{n}_{n_{0}}\right) \\
B & :=\bigcap_{n \in \mathbb{Z}^{+}} B_{n}=\left\{x=\lim _{n \rightarrow \infty} \mathbf{a}_{s_{n}} \cdot x_{n} \text { for some }\left(s_{n}\right) \rightarrow+\infty,\left\{x_{n}\right\} \subset \mathcal{O}_{\varepsilon}\left(\mathbf{B A D}_{n_{0}}\right)\right\}
\end{aligned}
$$

Since each B_{n} contains $\mathbf{a}_{s} \cdot \mathcal{O}_{\varepsilon}\left(\mathbf{B A D}_{n_{0}}\right)$ for some s, we have

$$
\mathrm{m}_{\mathrm{X}_{2}}\left(B_{n}\right) \geq \mathrm{m}_{\mathrm{X}_{2}}\left(\mathbf{a}_{s} \cdot \mathcal{O}_{\varepsilon}\left(\mathbf{B A D}_{n_{0}}\right)\right)=\mathrm{m}_{\mathrm{X}_{2}}\left(\mathcal{O}_{\varepsilon}\left(\mathbf{B} \mathbf{A} \mathbf{D}_{n_{0}}\right)\right)
$$

for every n. Hence $\mathrm{m}_{\mathrm{X}_{2}}(B) \geq \mathrm{m}_{\mathrm{X}_{2}}\left(\mathcal{O}_{\varepsilon}\left(\mathbf{B A D}_{n_{0}}\right)\right)>0$.
On the other hand, B is A-invariant. By ergodicity, B has full measure in X_{2}. But B is bounded, as it is contained in (check this!)

$$
\mathbf{a}_{(-\varepsilon, \varepsilon)} \cdot\left\{\Lambda \in \mathrm{X}_{2}, \operatorname{sys}(\Lambda) \geq \frac{1}{n_{0}}\right\}
$$

This is a contradiction.

References

[Cas59] J. W. S. Cassels, An introduction to the geometry of numbers, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, vol. Bd. 99, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959. MR 1579471
[EW11] Manfred Einsiedler and Thomas Ward, Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, vol. 259, Springer-Verlag London, Ltd., London, 2011. MR 2723325 1
[Kle23] Dmitry Kleinbock, Ergodic theory on homogeneous spaces and metric number theory, Ergodic theory, Encycl. Complex. Syst. Sci., Springer, New York, [2023] ©2023, pp. 597-613. MR 4647091 1
[KM99] D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math. 138 (1999), no. 3, 451-494. MR 17198271
[Mor15] Dave Witte Morris, Introduction to arithmetic groups, Deductive Press, [place of publication not identified], 2015. MR 33077551

[^0]: ${ }^{1}$ As remarked by H.Li, one can simply take \mathbf{w}_{0} to be any vector such that $\Lambda=\mathbb{Z} \mathbf{v}_{0}+\mathbb{Z} \mathbf{w}_{0}$. As the covolume of Λ is one, the distance from \mathbf{w}_{0} to $\mathbb{R} \mathbf{v}_{0}$ must be bounded from above. This gives a shorter proof.

[^1]: ${ }^{2}$ Alternatively, as remarked by H.Li, one can verify the invariance of measure under the transpose map on \mathcal{O}_{1}. Then right invariance then follows from the left invariance. We will make use of this symmetry again later.

