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Notation18

Vectors in Rn, by default, are written as column vectors. For a few x1, ...,xk, write19

(x1, ...,xk) for the n-by-k matrix whose i-th column is given by xi. We use I2 to denote20

the two-by-two identity matrix.21

1. Lecture 2, Space of lattices of R2, Dani’s correspondence and Ergodic22

theory23

One may consult Cassels’ book [Cas59] for facts about lattices in Rn. For an intro-24

duction to ergodic theory, we recommend Einsiedler–Ward’s book [EW11]. The proof25

of mixing of the geodesic flow is taken from Witte Morris’ excellent book [Mor15]. For26

relation between Khintchine’s theorem and exponential mixing, which is not discussed27

here, see the work of Kleinbock–Margulis [KM99]. The interaction between homogeneous28

dynamics and Diophantine approximation (especially the metric aspects) is very fruitful.29

See [Kle23] for a survey.30

1.1. Prelude. Certain problems in Diophantine approximations can be restated in terms31

of lattices in Rn (the study of such objects is called “geometry of numbers”). Rather than32

studying individual lattices one-by-one, it is fruitful to study all lattices at the same time.33

It turns out that this space allows the transitive action of a linear group. Hence tools from34

linear algebra can be applied. Moreover, this (non-compact) space has a finite invariant35

measure. Therefore, tools from ergodic theory kick in.36

Towards the end of this lecture, we will provide an alternative proof of BAD having37

zero Lebesgue measure from this point of view.38

1.2. Unimodular lattices in R2.39

Definition 1.1. A discrete subgroup Λ ≤ R2 is said to be a lattice iff there exists linearly40

independent x,y ∈ R2 such that Λ = Zv + Zw. The co-volume of a lattice, denoted as41

‖Λ‖, is defined to be |det(v,w)| = ‖v ∧w‖. A lattice is said to be unimodular iff its42

co-volume is equal to one.43

Definition 1.2. Let X2 denote the set of all unimodular lattices in R2.44
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Lemma 1.3. Let Λ be a lattice of R2 and F ⊂ R2 be a Borel subset. If F ∩ (F + v) = ∅1

for every nonzero v ∈ Λ, then Leb(F ) ≤ ‖Λ‖. On the other hand, if R2 =
⋃

v∈Λ F + v,2

then Leb(F ) ≥ ‖Λ‖.3

If both conditions are met, we call F a strict fundamental domain of Λ.4

Proof. Note that there exists a strict fundamental domain F0 for Λ with Leb(F0) = ‖Λ‖.5

For instance, if Λ = Zv+Zw, then F0 can be taken to be [0, 1)v+[0, 1)w. Let Fv := F ∩6

(F0−v) for v ∈ Λ. Then F =
⊔

v∈Λ Fv and hence Leb(F ) =
∑

Leb(Fv) =
∑

Leb(Fv+v).7

First assume F ∩ (F + v) = ∅ for every nonzero v ∈ Λ. Then (Fv + v)v∈Λ are disjoint8

from each other since (F + v)’s are. So9

Leb(F ) =
∑

Leb(Fv + v) ≤ Leb(F0) = 1.

Next assume R2 =
⋃

v∈Λ F + v. Then
⋃
Fv + v = F . Thus10

Leb(F ) =
∑

Leb(Fv + v) ≥ Leb(F0) = 1.

□11

We equip X2 with the following topology: A subset U ⊂ X2 is open iff for every Λ ∈ U ,12

say Λ = Zv + Zw, there exists ε > 0 such that every unimodular lattice Λ′ = Zv′ + Zw′13

with ‖v − v′‖ < ε, ‖w −w′‖ < ε belongs to U . Equivalently, we equip X2 with the14

Chabauty topology.15

Lemma 1.4. X2 is a separable metrizable space.16

There are different ways of showing X2 is metrizable. For instance, one can show that17

for every Λ = Zv + Zw ∈ X2 and every ε > 0, there exists Λ′ = Zv′ + Zw′ ∈ X2 with18

‖v′ − v‖ , ‖w′ −w‖ < ε and v′,w′ ∈ Q2. This would imply that X2 is regular (every x19

and every neighborhood N of x, there exists a smaller one whose closure is contained in20

N ) and has a countable basis (countably many open subsets that 1. cover X2, and 2.any21

intersection of two containing some x contains a third one containing the same x). Then22

invoke Urysohn’s metrization theorem.23

Note that there exist distinct Λ,Λ′ ∈ X2 such that for every ε > 0, there exist24

v,w,w,w′ with Λ = Zv + Zw and v′,w′ ∈ Λ′ such that ‖v − v′‖ < ε, ‖w −w′‖ < ε.25

However, it is not clear to me whether one can further require v′,w′ to form a Z-basis of26

Λ′.27

1.3. Systole function and Mahler’s criterion.28

Definition 1.5. For a lattice Λ, let sys(Λ) := infv ̸=0∈Λ ‖v‖.29

Lemma 1.6. sys : X2 → R>0 is a continuous function.30

Theorem 1.7. sys : X2 → R>0 is a bounded proper continuous function.31

Proof. It suffices to show that, given c0 > 0, for every sequence (Λn) ⊂ X2 with sys(Λn) >32

c0 for all n, there exists a convergent subsequence. It suffices, for every Λ ∈ X2 with33

sys(Λ) > c0, to find a constant C > 1 (depending on c0) such that Λ = Zv+Zw for some34

‖v‖ , ‖w‖ < C.35

Now fix such a c0 and Λ. Let v0 ∈ Λ be such that36

‖v0‖ = inf {‖x‖ | x ∈ Λ \ {0}} .
Once v0 is found, let w0 ∈ Λ1 be such that37

dist(w0,Rv0) = inf {dist(x,Rv0) | x ∈ Λ \ Rv0} .
Note that Λ = Zv0+Zw0. Indeed, if Λ = Zv1+Zw1 then v0 = av1+bw1 with gcd(a, b) =38

1. Then there exists w′
0 ∈ Λ such that Λ = Zv0 + Zw′

0. Write w0 = cv0 + dw′
0, then it39

follows from the definition that d = ±1. So w′
0 can be written as integral combinations40

of v0 and w0. Thus Λ = Zv0 + Zw0.41

It remains to give an upper bound on ‖v0‖ and dist(w0,Rv0) in terms of c0 (replacing42

w0 by w0 − nv0 for suitable n0 would give an upper bound for ‖w0‖).43

1As remarked by H.Li, one can simply take w0 to be any vector such that Λ = Zv0 + Zw0. As the
covolume of Λ is one, the distance from w0 to Rv0 must be bounded from above. This gives a shorter
proof.
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Let F := [0, 2) × [0, 2). Then Leb(F ) > 1. By Lemma 1.3, for some non-zero v ∈ Λ,1

v + F ∩ F 6= ∅. In other words, v = x1 − x2 for some xi ∈ F . Thus2

‖v0‖ ≤ ‖v‖ ≤ 2
√
2.

Also note that Λ ∩ Rv0 = Zv0 (such v0 is called primitive).3

Pick some unit vector y0 orthogonal to v0. Let F ′ := (0, 1)v0+(0, C)y0 with C := 2
c0

.4

Then5

Leb(F ′) =
2 ‖v0‖
c0

> 1.

Thus we find some non-zero w ∈ (F ′ − F ′) ∩ Λ. Hence w = w1v0 + w2y0 for some6

w1 ∈ (−1, 1) and w2 ∈ (−C,C). If w2 = 0, then w1 has to be integral, so is also 0. This7

contradicts against the fact that w is nonzero. So w /∈ Rv0. Moreover,8

dist(w0,Rv0) ≤ dist(w,Rv0) = |w2| ≤ C =
2

c0
.

So we are done. □9

Corollary 1.8. X2 is non-compact.10

A subset B of X2 is said to be bounded iff there exists c > 0 such that sys(Λ) > c for11

every Λ ∈ B. Otherwise we say that B is unbounded. So a subset is bounded iff it is12

precompact by Mahler’s criterion.13

A sequence (xn)n∈Z+ (or a subset indexed by positive real numbers (xt)t∈R+) in a14

topological space X is said to be divergent iff limn→+∞ sys(xn) = 0 (resp. limt→+∞ =15

0). By Mahler’s criterion, (xn)n∈Z+ is divergent iff for any compact subset C ⊂ X, there16

exists N such that for every n > N or every t > N , xn /∈ C.17

1.4. Group action. The set SL2(R) := {2-by-2 matrices with determinant 1} is natu-18

rally a topological space (subspace topology from R4) as well as a group (matrix multi-19

plication). It is a topological group since20

SL2(R)× SL2(R) → SL2(R)
(g, h) 7→ gh

and g 7→ g−1 from SL2(R) to itself are continuous.21

The group SL2(R) acts on X2 by (g,Λ) 7→ gΛ := {gv, v ∈ Λ}. The action is continuous22

in the sense that23

SL2(R)×X2 → X2

(g,Λ) 7→ gΛ

is continuous.24

Lemma 1.9. The map g 7→ g.Z2 from SL2(R) to X2 is continuous and open. Moreover,25

it factors through a a homeomorphism SL2(R)/SL2(Z) → X2.26

There are a few subgroups of SL2(R) that we are particularly interested in. First,27

U+ :=

{
u+
t :=

[
1 t
0 1

] ∣∣∣∣ t ∈ R
}

is a one-parameter subgroup (that is, t 7→ u+
t from (R,+) to U+ gives an isomorphism of28

topological groups) consist of unipotent matrices. Its action on X2 is sometimes referred29

as a horocycle/unipotent flow. Also,30

A :=

{
at :=

[
et 0
0 e−t

] ∣∣∣∣ t ∈ R
}

is a one-parameter subgroup consisting of diagonal matrices. Its action on X2 is sometimes31

called a geodesic/diagonal flow.32
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1.4.1. An explicit metric on X2. Once we realize X2 as a homogeneous space, we can1

equip it with a metric as follows.2

For A ∈ SL2(R), let ‖A‖op denotes the operator norm w.r.t. Euclidean norm:3

‖A‖op := sup
v ̸=0∈R2

‖A.v‖
‖v‖

.

Define a metric on SL2(R) by4

dist(g, h) := log
{
1 +

∥∥gh−1 − I2
∥∥
op

+
∥∥hg−1 − I2

∥∥
op

}
Once can verify that dist(gγ, hγ) for every γ ∈ SL2(R). Then,5

dist(gZ2, hZ2) := inf {dist(g, hγ) | γ ∈ SL2(Z)}

define a metric on SL2(R)/SL2(Z).6

1.5. Dani correspondence. For a real number α, let7

Λα := Z
[

1
0

]
+ Z

[
α
1

]
=

[
1 α
0 1

]
Z2 = u+

αZ2,

a unimodular lattice (in X2).8

Lemma 1.10 (Dani correspondence). A real number α is badly approximable iff (atΛα)t>09

is bounded in X2.10

Note that for every α, the full orbit (atΛα)t∈R is unbounded. Actually, (atΛα) as11

t→ −∞ diverges.12

Proof. For every (x, y)tr ∈ atΛα, there exists (m,n) ∈ Z2 such that13 [
x
y

]
=

[
et(m+ nα)

e−tn

]
.

So for ε > 0, sys(atΛα) ≥ ε iff for every (m,n) ∈ Z2 \ {0},14

et(m+ nα) ≥ ε, e−tn ≥ ε. (1)

Assume α is bad, namely, there exists c0 ∈ (0, 1) such that for every (p, q) ∈ Z2 with15

q 6= 0, |q| |p+ qα| > c0. So for 0 6= (x, y)tr = (et(m+ nα), e−tn)tr ∈ atΛα, if y 6= 0, then16

|xy| = |n||m+ nα| > c0, implying (x2 + y2)
1
2 ≥

√
2|xy| >

√
2c0.

If y = 0, then (x, y)tr = (etm, 0)tr. Hence ‖(x, y)tr‖ ≥ 1. Anyway, we have shown that17

every non-zero vector has norm at least √
c0.18

Conversely, suppose sys(atΛα) > c1 > 0 for all t > 0. For every (p, q) ∈ Z2 with q > 0,19

take tq > 0 such that etq = 2q
c1

. Then, ‖(etq (p+ qα), e−tqq)‖ ≥ c1 by Equa.(1). But20

|e−tq|2 ≤ c21
4
.

So21

|etq (p+ qα)| ≥
√
3

2
c1 =⇒ q |p+ qα| ≥

√
3

4
c21.

The proof is now complete.22

□23

1.6. Invariant measures on X2.24

Definition 1.11. Let f : X → Y be a continuous map between two topological spaces X25

and Y . Given a measure µ on (X,BX) (BX is the Borel σ-algebra, the smallest σ-algebra26

containing all open subsets), we define f∗µ to be a measure on Y by f∗µ(E) := µ(f−1(E))27

for every E ∈ BY . If X = Y and f∗µ = µ, we say that f preserves the measure µ. If G28

is a group acting on X by homeomorphisms such that g∗µ = µ for every g ∈ G, then we29

say that µ is G-invariant.30

Lemma 1.12. There exists a locally finite SL2(R)-invariant measure mX2
on X2.31
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There are different ways to see the existence of mX2
. For instance, one may equip1

SL2(R) with a right invariant Riemannian metric and then SL2(R)/SL2(Z) will inherit2

a Riemannian metric. One can check that the volume form induced from such a metric3

is SL2(R)-invariant. We will give an explicit construction of an invariant measure on4

SL2(R) and then induce one on the quotient space in the next subsection. What is less5

trivial is that:6

Theorem 1.13. mX2 is a finite measure.7

A proof will probably be given in next lecture.8

Henceforth, we normalize mX2
to be a probability measure, namely, mX2

(X2) = 1.9

1.7. A construction of the invariant measure.10

1.7.1. Explicit construction of invariant measures on SL2(R). Let11

O1 :=

{[
x y
z w

]
∈ SL2(R)

∣∣∣∣ x 6= 0

}
, O2 :=

{[
x y
z w

]
∈ SL2(R)

∣∣∣∣ z 6= 0

}
They can be parametrized by domains in Euclidean spaces. The φi’s below are homeo-12

morphisms:13

O′
1 :=

{
(x, y, z) ∈ R3

∣∣ x 6= 0
}

O1

O′
2 :=

{
(x, z, w) ∈ R3

∣∣ z 6= 0
}

O2

φ1

≃

φ2

≃

where14

φ1(x, y, z) :=

[
x y

z 1+yz
x

]
, φ2(x, z, w) :=

[
x xw−1

z
z w

]
.

Lemma 1.14. The map φ12(x, y, z) := (x, z, 1+yz
x ) from {(x, y, z) ∈ O1, z 6= 0} to15

{(x, z, w) ∈ O2, x 6= 0} sends (φ12)∗

∣∣∣dxdydzx

∣∣∣ = ∣∣dxdzdw
z

∣∣. Therefore16

(φ1)∗

∣∣∣∣dxdydzx

∣∣∣∣ = (φ2)∗

∣∣∣∣dxdzdwz

∣∣∣∣
defines a locally finite measure on SL2(R). Also note that {(x, y, z) ∈ O1, z = 0} has17

measure zero under
∣∣∣dxdydzx

∣∣∣. Similarly {(x, z, w) ∈ O2, x = 0} has measure zero under18 ∣∣dxdzdw
z

∣∣.19

Proof. Direct calculation. Note that by differentiating xw − yz = 1, one obtains wdx +20

xdw = ydz + zdy. □21

Let mSL2(R) denote this measure.22

1.7.2. Invariance property. Define23

U+ :=

{
u+
t :=

[
1 t
0 1

] ∣∣∣∣ t ∈ R
}
.

and24

U− :=

{
u−
t :=

[
1 0
t 1

] ∣∣∣∣ t ∈ R
}
.

Lemma 1.15. SL2(R) is generated by the two subgroups U+ and U−.25

Proof. Left as exercise. □26

By restricting to O1 or O2 respectively, it is easy to verify that27

Lemma 1.16. mSL2(R) is invariant under the left multiplication by SL2(R).28

By similar reasoning2, using additionally29

O3 :=

{[
x y
z w

]
∈ SL2(R)

∣∣∣∣ y 6= 0

}
,

one can show that30

2Alternatively, as remarked by H.Li, one can verify the invariance of measure under the transpose map
on O1. Then right invariance then follows from the left invariance. We will make use of this symmetry
again later.
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Lemma 1.17. mSL2(R) is also invariant under the right multiplication by SL2(R).1

1.7.3. Strict fundamental domain. A Borel subset F ⊂ SL2(R) is said to be a strict2

fundamental domain for SL2(Z) iff3

SL2(R) =
⊔

γ∈SL2(Z)

F · γ.

Lemma 1.18. Strict fundamental domain exists.4

Proof. First we choose a small open neighborhood N of identity in SL2(R) such that5

Nγ ∩ N = ∅ for all non-identity element γ in SL2(Z). Then choose a sequence (gn) ⊂6

SL2(R) such that7

SL2(R) =
⋃
gn · N .

Then we define8
V1 := g1N
V2 := g2N \ g1NΓ

V3 := g3N \ (g1NΓ ∪ g2NΓ)

....

From the definition, V2 is in the complement of V1Γ, V3 is in the complement of (V1 ∪9

V2)Γ.... Therefore, Vi ∩Vjγ = ∅ for every i 6= j and γ ∈ Γ. Moreover, by the choice of N ,10

Vi ∩ Viγ = ∅ for non-identity γ ∈ SL2(Z). Thus if we let11

F :=

∞⋃
i=1

Vi,

then F ∩Fγ = ∅ for every γ ̸=id ∈ SL2(Z). On the other hand, for g ∈ SL2(R), if ng is the12

smallest positive integer n such that g ∈ gnNΓ, then g ∈ VngΓ ⊂ FΓ by the definition of13

Vn’s. □14

1.7.4. The invariant measure on the quotient. Fix some strict fundamental domain F ,15

let mF be the restriction of mSL2(R) to F . Let π : SL2(R) → SL2(R)/SL2(Z) be the16

natural quotient and let πF denote the induced bijection F → SL2(R)/SL2(Z). Let17

m[F ] := (πF )∗mF .18

Lemma 1.19. If O ⊂ SL2(R) is such that π restricted to O is injective, then19

(πO)∗
(
mSL2(R)|O

)
= m[F ]|π(O).

Consequently, m[F ] is independent of the choice of strict fundamental domain and m[F ]20

is invariant under the left action of SL2(R).21

Proof. It suffices to show mSL2(R)(O) = mSL2(R)(π
−1
F (π(O))) for every such O as in the22

statement.23

For every γ ∈ SL2(Z), let24

Oγ := {x ∈ O | xγ ∈ F} .
By assumption, elements from (Oγ)γ∈SL2(Z) or (Oγ · γ)γ∈SL2(Z) are disjoint from each25

other. Hence26

mSL2(R)(O) = mSL2(R)(Oγ) = mSL2(R)(Oγ · γ) = mF (O).

□27

This finishes the proof of Lemma 1.12. The local finiteness also follows from the lemma28

above and the fact that mSL2(R) is locally finite.29

1.8. Ergodicity and mixing.30

Definition 1.20. The action of A ↷ (X2,mX2
) is said to be31

• ergodic iff for every Borel subset B ⊂ X2 that is A-invariant (i.e., a.B = B for32

every a ∈ A), one has mX2(B) = 0 or mX2(X2 \B) = 0;33

• mixing iff for every divergent sequence (an) ∈ A and Borel subsets B,C, one has34

lim
n→∞

mX2
(B ∩ a−1

n .C) = mX2
(B)mX2

(C).

Lemma 1.21. Mixing implies ergodicity.35
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Proof. Indeed, let B be an A-invariant subset and let (an) be a divergent sequence in A.1

Then by mixing,2

lim
n→∞

mX2
(B ∩ a−1

n .B) = mX2
(B)2.

By A-invariance, the left hand side is mX2
(B). Then mX2

(B)2 = mX2
(B) implies3

mX2
(B) = 0 or 1. So we are done. □4

We are going to prove that the A-action on X2 is mixing via a little functional analysis.5

Theorem 1.22. The action of A ↷ (X2,mX2
) is mixing.6

1.9. The associated unitary representation. Let7

L2(X2,mX2) :=

{
f : X2 → C measurable

∣∣∣∣ ∫ |f |2mX2 < +∞
}
;

L2
0(X2,mX2

) :=

{
f ∈ L2(X2,mX2

)

∣∣∣∣ ∫ fmX2
= 0

}
.

(note that L2 functions are in L1 since mX2
is finite) with inner product denoted by8

〈f, g〉 :=
∫
X2

f(x)g(x)mX2
(x)

where b denotes the complex conjugate of a complex number b. Also, ‖f‖2 :=
√

〈f, f〉.9

As usual, we identify two functions f, g ∈ L2
0(X2,mX2

) if they are equal almost surely.10

Then L2
0(X2,mX2

) with this inner product is a separable (i.e., has a countable dense11

subset) Hilbert space.12

Note that the SL2(R) action on (X2,mX2) induces an action of SL2(R) on L2
0(X2,mX2)13

defined by14

Ugf(x) := f(g−1x).

Lemma 1.23. The action has the following properties:15

1. for each g ∈ SL2(R), Ug : L2
0(X2,mX2

) → L2
0(X2,mX2

) is a unitary operator;16

2. for every ε > 0 and f ∈ L2
0(X2,mX2

), there exists a neighborhood Oε of the17

identity matrix in SL2(R) such that for every g ∈ Oε,18

‖Ugf − f‖2 ≤ ε.

Proof. Take g ∈ SL2(R). Since the action of g preserves mX2 , we have
∫
f(gx)mX2(x) =19 ∫

f(x)mX2(x) for every integrable function f . For ϕ ∈ L2(X2,mX2), by applying this20

equality to f = |ϕ|2, we see that ‖Ugϕ‖2 = ‖ϕ‖2.21

For the second part, note that the set Cc(X2) of compactly supported functions are22

dense in L2(X2,mX2
) (for instance, see Theorem 3.14 in Rudin’s book Real and complex23

analysis).24

For every ε > 0 and f ∈ L2(X2,mX2), find ϕ ∈ Cc(X2) such that ‖ϕ− f‖2 ≤ 0.1ε. Since25

ϕ is uniformly continuous, find δ > 0 such that d(x, y) < δ =⇒ |ϕ(x)− ϕ(y)| < 0.1ε. Fix26

a relatively compact neighborhood of identity O0. Then O−1
0 . supp(ϕ) is still compact.27

Thus, we can find Oε ⊂ O0, a neighborhood of the identity, such that for every g ∈ Oε28

and x ∈ C := O−1
0 . supp(ϕ) ∪ supp(ϕ),29

|ϕ(gx)− ϕ(x)| < 0.1ε.

Consequently,30 ∫
X2

|ϕ(gx)− ϕ(x)|2 mX2
(x) =

∫
C

|ϕ(gx)− ϕ(x)|2 mX2
(x) ≤ (0.1ε)2,

implying ‖Ugϕ− ϕ‖2 < 0.1ε.

Therefore, for g ∈ Oε31

‖Ugf − f‖2 ≤ ‖Ugϕ− ϕ‖2 + ‖Ugϕ− Ugf‖+ ‖g − f‖ ≤ 0.1ε+ 0.1ε+ 0.1ε < ε.

So the proof completes. □32
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1.10. Mixing of the geodesic flow. In this subsection we prove Theorem 1.22. We1

need to show that for ϕ, ψ ∈ L2
0(X2,mX2

) and a divergence sequence (an) ∈ A+ (namely,2

assume the (1, 1) entries of matrices an diverge to +∞. The other case when they diverge3

to −∞ is similar), one has4

lim
n→∞

〈Uan
ϕ, ψ〉 = 0.

For simplicity write L2
0 := L2

0(X2,mX2).5

1.10.1. The basics. As L2
0 is separable, by applying a diagonal argument, we assume that6

lim
n→∞

〈Uank
ϕ, ψ〉 exists, ∀ϕ, ψ ∈ L2

0.

for some subsequence nk. It suffices to show that for this subsequence, the limit above is7

zero for every ϕ, ψ ∈ L2
0.8

For each ϕ ∈ L2
0, the map ψ 7→ limn→∞〈Uank

ϕ, ψ〉 is conjugate-linear and bounded9

since10 ∣∣∣ lim
n→∞

〈Uank
ϕ, ψ〉

∣∣∣ = lim
n→∞

∣∣∣〈Uank
ϕ, ψ〉

∣∣∣ ≤ ‖ϕ‖2 ‖ψ‖2 .

By Riesz’s lemma, there exists some element in L2
0, denoted as E(ϕ), such that 〈E(ϕ), ψ〉 =11

limn→∞〈Uank
ϕ, ψ〉 for every ψ ∈ L2

0.12

Next we note that ϕ 7→ E(ϕ) is a bounded operator. Linearity is clear. To show that13

it is bounded, apply the computation above to ψ := E(ϕ),14

‖E(ϕ)‖22 = 〈E(ϕ), E(ϕ)〉 ≤ ‖ϕ‖2 ‖E(ϕ)‖2 =⇒ ‖E(ϕ)‖2 ≤ ‖ϕ‖2 .
Let E∗ be the adjoint operator of E, then15

〈E∗ϕ, ψ〉 = lim
n→∞

〈Ua−1
nk
ϕ, ψ〉.

1.10.2. Almost invariant functions are constants. Next we are going to show that the16

image of E is fixed by SL2(R) and is hence zero by the following lemma17

Lemma 1.24. Let f ∈ L2
0. If for every g ∈ SL2(R), f(g.x) = f(x) for almost every18

x ∈ X2, then f is a constant function a.e.19

Proof. Consider the set20

F := {(g, x) ∈ SL2(R) | f(g.x) 6= f(x)} .
By Fubini theorem, mX2(F ) = 0. Let Fx := {g ∈ SL2(R) | f(g.x) 6= f(x)}. Apply Fubini21

again22

mX2
(F ) =

∫
x∈X2

mSL2(R) (Fx) mX2
(x)

So there exists x0 ∈ X2 such that for almost all g ∈ SL2(R), f(g.x0) = f(x0). Thus f is23

equal to f(x0) a.e. □24

Actually, one only needs to show the invariance by the following two special subgroups.25

Recall26

U+ :=

{
u+
t :=

[
1 t
0 1

] ∣∣∣∣ t ∈ R
}
.

and27

U− :=

{
u−
t :=

[
1 0
t 1

] ∣∣∣∣ t ∈ R
}
.

Also recall from Lemma 1.15 that SL2(R) is generated by U+ and U−.28

1.10.3. The easy part. For simplicity we assume nk = k.29

Elements from U+ and U− enjoy the following properties30

lim
n→∞

a−1
n uan = I2, ∀u ∈ U+, lim

n→∞
anva

−1
n = I2, ∀ v ∈ U−.

Combined with Lemma 1.23, for an element u ∈ U+, one gets31

〈UuE(ϕ), ψ〉 = lim
n→∞

〈UuUan
ϕ, ψ〉 = lim

n→∞
〈Ua−1

n uan
ϕ,Ua−1

n
ψ〉

= lim
n→∞

〈ϕ,Ua−1
n
ψ〉 = 〈E(ϕ), ψ〉.

for all ϕ, ψ ∈ L2
0. Thus Uu ◦ E = E.32

Similarly, for v ∈ U−, one has Uv ◦ E∗ = E∗.33
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1.10.4. The trick.1

Lemma 1.25. Let E,E∗ be as above. Then ker(E) = ker(E∗).2

Note that in general the kernel of a linear operator is not the same as its adjoint.3

Proof.
〈E(ϕ), E(ϕ)〉 = lim

n→∞
〈Uan

ϕ,E(ϕ)〉

= lim
n→∞

lim
m→∞

〈Uan
ϕ,Uam

ϕ〉

= lim
n→∞

lim
m→∞

〈Ua−1
m
ϕ,Ua−1

n
ϕ〉 = 〈E∗(ϕ), E∗(ϕ)〉.

□4

By result in last subsubsection, E ◦ (Uv − I2) = 0 for every v ∈ U−. By the lemma,5

E∗ ◦ (Uv − I2) = 0. Taking the adjoint, we get Uv ◦ E = E. So we are done.6

1.11. Another proof of Leb(BAD) being zero. Now we give an alternative proof7

of the fact that the set of badly approximable numbers has Lebesgue measure zero. We8

assume Leb(BAD) > 0 and derive a contradiction.9

We fix some ε > 0 and let10

Oε :=

{[
es 0
0 e−s

]
·
[

1 0
t 1

]
·
[

1 r
0 1

]
.Z2

∣∣∣∣ s, t ∈ (−ε, ε), r ∈ (0, 1]

}
= a(−ε,ε)u

−
(−ε,ε)u

+
(0,1].Z

2.

Let Obt : SL2(R) → X2 defined by g 7→ g.Z2.11

Lemma 1.26. There exists a continuous positive function φ : (−ε, ε)×(−ε, ε)×(0, 1) → R12

such that13

mX2
|Oε

= Obt∗ (φ|dsdtdr|) .

For n ∈ Z+, define14

BADn :=

{
r ∈ BAD, sys(at.Λr) ≥

1

n
, ∀ t > 0

}
By Dani correspondence, BAD =

⋃
n∈Z+ BADn. Thus Leb(BADn0) > 0 for some15

n0 ∈ Z+. Let Oε(BADn0
) be the subset of Oε where r ∈ BADn0

. By Lemma 1.26,16

mX2
(Oε(BADn0

)) > 0.

Let17

Bn :=
⋃
s≥n

as.Oε(BADn0
)

B :=
⋂

n∈Z+

Bn =
{
x = lim

n→∞
asn .xn for some (sn) → +∞, {xn} ⊂ Oε(BADn0)

}
.

Since each Bn contains as.Oε(BADn0
) for some s, we have18

mX2
(Bn) ≥ mX2

(as.Oε(BADn0
)) = mX2

(Oε(BADn0
))

for every n. Hence mX2(B) ≥ mX2(Oε(BADn0)) > 0.19

On the other hand, B is A-invariant. By ergodicity, B has full measure in X2. But B20

is bounded, as it is contained in (check this!)21

a(−ε,ε).

{
Λ ∈ X2, sys(Λ) ≥

1

n0

}
.

This is a contradiction.22
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