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LECTURE 2.5, INJECTIVITY RADIUS AND A THICKENING TRICK
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NOTATION

Let Iy be the two-by-two identity matrix.
Fix a right invariant metric dS*>® on SL;(R) compatible with its topology. Let d*2
be the induced metric on SLo(R)/SLy(Z) =2 X5 defined by
d¥2 (g1 SLy(Z), g SLa(Z)) :=  inf  dS%2®) (g, — inf  d=®) (g gom).
(91 SL2(Z), g2 SL2(Z)) %721611SL2(Z) (9171, 9272) ’yeérﬁQ(Z) (91, 927)
Note that this inf can actually be obtained for some 7 € SLy(Z).
For 6 > 0 and x € X, let

B(5) == {g € SLy(R) | dS=® (g, 1) < 5} , BX(6) = {y e Xy | d(x,y) <5}

For simplicity, we will write d := d32®) and B,(§) = BX2(5). Hopefully no confusion
shall arise.

1. APPENDIX TO LECTURE 2, INJECTIVITY RADIUS.
1.1. Injectivity radius.

Definition 1.1. For z € Xy = SLy(R)/SL3(Z), choose g, € SLa(R) such that x =
gz SLo(Z), define'

. 1.
InjRad(z) := m inf {d(gs7, 92) | V1, € SL2(Z)},
which is independent of the choice of g, .

Lemma 1.2. Let € C Xy be a compact subset, then there exists ¢ > 0 such that
InjRad(z) > ¢ for every x € €.

Proof. Since every compact subset of X5 is contained in the image under SLo(R) —
SL5(R)/ SL2(Z) of some compact subset of Xy, it suffices to show that

inf {d(127g’ygil) | g€ Cg/a V#L, € SL?(Z)} >0

for every compact subset ¢’ of Xs. o
Let T'(1) be the collection of v € T'\ {Iz} such that gyg~* € By for some g € ¢”. Since

the map (g,h) — ¢~ 'hg is continuous, we know that the union of g='B(1)g for g € €’
is compact. Hence I'(1) is a compact subset of a discrete subset I' \ {Is}, which must be
finite. Say, I'(1) = {71, ..., 1}

Then

inf {d(I2,97v9™") | g € €', 1, € SLa(Z)}

1 Email: zhangrunlinmath@outlook.com.
1We are content with this rather coarse definition of injectivity radius here, which might be different
from the one you are used to.
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is either at least one or is equal to

inf{ d(Io,g) | g € UUg% 13 >0.
geEE’ i=1

But

l l
U Uois™ = U gmg™

geT’ i=1 i=1ge€’
is a finite union of compact subsets, and is thus compact. It also does not contain I.
Therefore it must have positive distance away from Is. So we are done. O
Lemma 1.3. For x € X5 and § < InjRad(z), the natural map
Obt, : B(0) — B(d).x
g g.x
is an isometry between (B(8),d) = (BX2(8),d*2). In particular, BX2(8) = B(5).x.
Proof. For g1, g2 € B(9), we need to show that

inf d T i =d ) .
. (91925 92927) = d(g1, 92)

In different words,

d(919x, 929:7) > d(g1,92), V21, € SLa(Z).
This can be seen from the following inequalities:
(929, 92927) > d(ges o) — A(9a, 9292) — d(92927, 9a)
=d(gz, 9.7) — d(I2, g2) — d(g2, I2)
>105 —§ — § = 84.

Then
d(9192, 92927) > d(9292, 92927) — d(91 9z, 9292
> d(g29x, g2gry) — 20 > 85 — 25 = 66.

But d(g1,92) < 26. So we are done. The last claim follows from the definition of the
distance function on the quotient. O

1.2. Integration in local coordinates. For 1 > 0, define
0, = {aru;uzr | r,s,te (—77,77)}.

By explicit calculation, one can show that O, is an open neighborhood of the identity
element in SLo(R) for every n > 0.
We fix 19 > 0 small enough such that

(—=110,710) = O,
(rys,t) — aru;uj'

is a homeomorphism. We find ¢,,,, a positive continuous function on [—7q, no)3, such that
for every f € L'(SLy(R), mgy, r));

/zeo f(z)msy,®)(2) / / f a,u;u;) ¢y, (r, s,t) drdsdt.

0

Fix a constant C1 > 1 such that ||¢y,||,,, < C1.
By the relation between mgy,,(r) and mx,, one can show that

Lemma 1.4. Let x € Xy and § < InjRad(z). Let 0 < n < ng be such that O, C B(9).
Then for every f € L' (X3, mx, ),

/ZEOM f(z)msr, =) (2 / / / Flauruf.z) gy, (r, s, t) drdsdt.

Proof. This follows from Lemma 1.3. d
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1.3. Uniform mixing in a weak sense. The main result of this appendix is the fol-
lowing very weak form of equidistribution of expanding unipotent trajectories. The point
is the uniformity as the base points vary in a compact subset.

Theorem 1.5. Fiz yg € Xa, g9 € (0,1) and a compact subset € of Xo. There exist
5, T >0 and M € 2Z% such that for every x € € and T' > T,

0.5
1 apu.z)dt > 6
[ 1y, i)
Note

0.5
/ 1 a,, (apuf.x)dt = Leb {t € [-0.5,0.5] | apru).w € BZS(Z (z—:o)}
—0.5 Byo (e0)

1.4. Preparations. Firstly, by Lemma 1.2, we find 0 < 7, < 19 such that O,, C B(do)
for some §; > 0 that is smaller than InjRad(x) for all x € ¥. Thus, Lemma 1.4 is
applicable to every x € € and n = ;.

Then we choose 0 < 7 < min{ny, 0.1} such that O,, C B(0.5e¢). This has the effect
that

Lemma 1.6. For every © € Xo, T > 0 and r,s € (—n2,72), one has the following
implication:
ar.(aruy .x) € By, (0.5e0) = ar.x € By,(eo).

Proof. Indeed, given ar.(a,u; .z) € By, (0.5¢¢), we have
d*2(ar.z,y0) < d*2(ar.z,ar.a,u; .z) + d<2 (ar.a,u; .z, yo)
< dX2 (ar.z,a,u__,r ar.x) + 0.5
< d(Iz,a,u s ,) 4 0.5¢0
(- Oy, C B(0.52¢) ) < 0.5¢¢ + 0.5e¢ = €.

Next we choose 0 < 13 < 1o satisfying the following:
Lemma 1.7. There exists 0 < n < 12 such that for every z,y € €, the following
implication holds:
€Oy = O,y CO,,.x.

Proof. Choose 0 < 6 < dy (the uniform injectivity radius) such that B(6) C O,,. Then
choose 0 < 7 < 12 such that O, C B(0.50). So

reOpy = 2€B(050)y = ye B(l).a CO,,.z.
This completes the proof. O

1.5. Proof of Theorem 1.5. Find M € 2Z% large such that n;l —2<M< n;l. By
compactness, find finitely many {x1,...,2;} C € such that

l
% C U Oﬁs'l‘i'

i=1
By mixing (Theorem 1.22 from Lecture 2), for each i = 1,..,1, we find 7; > 0 such that
for every T > T;,
mx, (Op,.7; Naz By, (0.560)) > 0.5mx, (O,,.7;) mx, (By, (0.50))
=0.5mgr, ®) (On,) mx, (By, (0.5¢0)) -

Let T := max{T;} and ¢; denote the right hand side. Also, let

P—
- Cidp)*
Now take x € ¥ and T’ > T and let us prove the conclusion.
Find ¢ such that x € O,,.x;. By Lemma 1.7, we have O,,.x; C O,, ..
3



1 < mx, (Op,.7; Naz By, (0.5¢0))
< mx, (O,.x Naz By, (0.5¢))

:/ 1B, (0.5¢0) (A172) mx, (2)
Oy
(local integration lemma 1.4) / / / By, (0.520) (AT AUy ul.z) ¢y, (r, s,t)drdsdt

(boundedness of density function) < Cy / / / (0.5¢0) (@77 ayuy u.z)drdsds

(Lemma 1.6) < Cl/ / / (o) (@ uf ) drdsdt
= 014772/ lByO(EO)(aT/u?'.x)dt
—n2

0.5
< 014775/ 1By0(€0)(aT/uf.z)dt
—0.5

3 Finally we have

0.5
&]
1 ) .z)dt =4.
/4.5 By o) (BT u )t > Ch4(n2)?
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