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Notation19

The set of positive integers is denoted by Z+. For a real number x, let 〈x〉 denote the20

distance to the nearest integer, namely, 〈x〉 = infn∈Z |x− n|. Leb denotes the standard21

Lebesgue measure on Rn where the n is understood from the context.22

For x, y ∈ Z non-zero, we let gcd(x, y) ∈ Z+ to be the greatest common divisor of |x|23

and |y|. If one of them is zero but the other is not, we set gcd(x, y) to be the absolute24

value of the non-zero one. Also, gcd(0, 0) := 0. Two integers are said to be coprime iff25

gcd(x, y) = 1.26

Abbreviate ”infinitely many” as “i.m.”; ” almost every ” as “a.e.”.27

1. Lecture 1, Dirichlet’s theorem, badly approximable numbers and28

Khintchin’s zero-one law29

References: I am mostly following [Zaf17, Cas50]. One may also consult the survey30

[BRV16] (available on arxiv).31

1.1. Foreword. Number theory provides a huge amount of interesting problems. Besides32

“elementary” methods, tools from different branches of math are introduced to solve them.33

Assuming Galois theory and ring theory, one can give an introduction to number fields.34

Assuming complex analysis, one can study Riemann zeta functions, Dirichlet L functions35

or modular forms.36

This course is concerned with so-called “Diophantine approximation” problems, which37

are concerned with approximating real numbers by rational numbers. Actually, we will38

focus on a specific (still unsolved!) problem: Littlewood conjecture. We will present the39

work of Einsiedler–Katok–Lindenstrauss on this conjecture, showing the exception set has40

dimension zero. They use tools coming from dynamics, which will be introduced later.41

As this course is supposed to be introductory, we will start with some basics before42

discussing the deep work of EKL.43
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2 RUNLIN ZHANG

1.2. The beginning. The starting point of Diophantine approximation is the following:1

Fact 1.1. The set of rational numbers Q is dense in real numbers R. In other words, for2

every x ∈ R and ε > 0, there exist two integers (p, q) with q > 0 such that
∣

∣

∣
x− p

q

∣

∣

∣
< ε.3

To have a better approximation of x ∈ R, one should use rational numbers with large4

denominators. How large it has to be?5

Theorem 1.2 (Dirichlet). For every x ∈ R and N ∈ Z+, there exists (p, q) ∈ Z2 with6

0 < q ≤ N such that7
∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

<
1

Nq
.

The proof is based on “drawer’s principle” (or pigeon-hole principle).8

Proof. For k = 1, 2, ..., N find nk ∈ Z such that kx− nk ∈ [0, 1). Write9

{kx− nk, k = 1, ..., N} = {x1 ≤ x2 ≤ ... ≤ xN}.
Thus, one of the numbers10

{x1, x2 − x1, x3 − x2, ..., xN − xN−1, 1− xN}
has to be strictly smaller than 1

N
. Say xi0 − xi0−1 <

1
N
. By convention, x0 := 0 = 0 · x11

and xN+1 := 1 = 0 · x + 1. Therefore, for some integers {k1 < k2} ⊂ {0, ..., N}, one has12

for some p ∈ Z,13

|k2x− k1x− p| < 1

N
Let q := k2 − k1, then14

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

<
1

Nq
,

proving the assertion. �15

1.3. Badly approximable numbers. As a corollary of the above theorem, one gets16

Corollary 1.3. For every x ∈ R, there exist infinitely many pairs of integers (p, q) such17

that18
∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

<
1

q2
.

In other words, 〈qx〉 < 1
q
for infinitely many q ∈ Z+.19

Definition 1.4. A real number x is said to be badly approximable iff there exists c > 020

such that21
∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

>
c

q2
, ∀ (p, q) ∈ Z2, q > 0.

Or in other words, 〈qx〉q > c for all q ∈ Z+. We will let BAD denote the set of badly22

approximable numbers. If an irrational number x ∈ R \Q is not badly approximable, we23

say that x is well-approximable.24

This definition is non-trivial in the sense that there are badly approximable numbers25

as well as well-approximable numbers.26

Example 1.5.
√
2 is badly approximable.27

Proof. Take ε ∈ (0, 1). Assume that there are integers p, q with q > 0 such that28

q
∣

∣

∣
q
√
2− p

∣

∣

∣
< ε.

Thus29
∣

∣

∣
q
√
2 + p

∣

∣

∣
< ε/q + 2q

√
2 < 4q.

Multiplying the above two together gives30

q
∣

∣2q2 − p2
∣

∣ < 4qε =⇒
∣

∣2q2 − p2
∣

∣ < 4ε.

But 2q2 − p2 is a non-zero integer, so
∣

∣2q2 − p2
∣

∣ ≥ 1. Thus 1 < 4ε. This finishes the31

proof, showing q〈q
√
2〉 ≥ 1

4 for every q ∈ Z+. �32

Conjecture 1.6. Algebraic numbers that are not contained in a quadratic number field33

are not bad.34
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So far no single example seems known about this conjecture. For instance, it is un-1

known whether 3
√
2 is badly approximable or not.2

Remark 1.7. However, for every ε > 0 and irrational algebraic number x, there exists3

c = c(x, ε) > 0 such that q1+ε〈qx〉 > c(x, ε) for every q ∈ Z+. This is a theorem of4

Roth. Its generalization by Schmidt, known as subspace theorem, has applications to5

other problems in number theory.6

Example 1.8. 0.10100001000000001... ( the n-th group of 0’s consists of n+m consec-7

utive zeros if there are m digits in front of it) is well-approximable.8

1.4. Littlewood conjecture.9

Conjecture 1.9 (Littlewood). For every pair (x, y) of real numbers, for every ε > 0,10

there exists q ∈ Z+ such that11

q〈qx〉〈qy〉 < ε.

Equivalently,12

inf
q∈Z+

q〈qx〉〈qy〉 = 0. (1)

Remark 1.10. Note that if one of x or y does not belong to BAD, then Equa.(1) holds.13

Theorem 1.11 (Einsiedler–Katok–Lindenstrauss [EKL06]).

dim{(x, y) ∈ R2, Equa.(1) fails } = 0.

This will be proved in later lectures. We will soon prove that14

Theorem 1.12. Leb(BAD) = 0. Consequently,15

Leb{(x, y) ∈ R2, Equa.(1) fails } = 0.

The following two theorems will not be proved, but I find it healthy to compare them16

with Littlewood conjecture and EKL’s work.17

Theorem 1.13 (Gallagher).

Leb{(x, y) ∈ R2, inf
q∈Z+

q〈qx〉〈qy〉 · (log q)2 = 0} = 0.

Theorem 1.14 (Badziahin [Bad13]).

dim{(x, y) ∈ R2, inf
q∈Z+

q〈qx〉〈qy〉 · log q log log q = 0} = 2.

We will sometimes restrict our attention to numbers in the interval [0, 1) without loss18

of generality.19

1.5. Khintchine’s zero-one law. Let ψ : Z+ → R+ be a sequence of positive real20

numbers (for instance ψ(q) := q−1). Define21

W (ψ) :=

{

x ∈ [0, 1),

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

< q−1ψ(q) for i.m. q ∈ Z+, p ∈ Z

}

=
{

x ∈ [0, 1), 〈qx〉 < ψ(q) for i.m. q ∈ Z+
}

(2)

Theorem 1.15 (Khintchin). Assume ψ is non-increasing. Then,22

Leb(W (ψ)) =

{

0 if
∑

ψ(n) < +∞
1 if

∑

ψ(n) = +∞ .

Remark 1.16. The assumption that ψ is non-increasing is necessary.23

That Leb(BAD) = 0 follows directly from this theorem.24

Proof of Theorem 1.12 assuming Theorem 1.15. For every c > 0 and q ∈ Z+, let ψc(q) :=25

cq−1. Then, BAD is the complement in [0, 1) of the union of W (ψn−1) as n ranges over26

positive integers. Thus it suffices to show that Leb(W (ψc)) = 1 for every c > 0. By27

Theorem 1.15, this follows from the fact that
∑

n∈Z+ cn−1 = +∞. �28
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1.6. Proof of the convergence part. In this subsection, we explain the convergence1

part of Theorem 1.15. Namely, we assume
∑

ψ(n) < +∞ and prove Leb(W (ψ)) = 0.2

For this one uses the Borel–Cantelli lemma:3

Lemma 1.17. Let (En)n∈Z+ be a sequence of measurable subsets of [0, 1) such that4
∑

Leb(En) < +∞. Then5

Leb ({x ∈ En for i.m. n}) = 0.

Remark 1.18. The set {x ∈ En for i.m. n} is sometimes written as lim supEn.6

Let7

Wn(ψ) := {x ∈ [0, 1) | 〈nx〉 < ψ(n)} .
In light of Lemma 1.17, it suffices to show that

∑

Leb(Wn(ψ)) <∞. Indeed, for n large8

enough (such that ψ(n) < 0.5),9

Wn(ψ) =
⊔

i=0,1,...,n−1

{x ∈Wn(ψ) | nx− i ∈ [0, 1)}

=
⊔

i=0,1,...,n−1

{

x ∈ [
i

n
,
i+ 1

n
), nx ∈ [i, i+ ψ(n)) ∪ ((i+ 1)− ψ(n), i+ 1)

}

=
⊔

i=0,1,...,n−1

[
i

n
,
i

n
+
ψ(n)

n
) ∪ (

i+ 1

n
− ψ(n)

n
,
i+ 1

n
).

Hence,10

Leb(Wn(ψ)) =
∑

i=0,1,...,n−1

2ψ(n)

n
= 2ψ(n).

Thus the divergence of
∑

Leb(Wn(ψ)) follows.11

1.7. Proof of the divergence part. From now on assume
∑

ψ(n) = +∞ and we wish12

to show Leb(W (ψ)) = 1. The proof will consist of two steps: Leb(W (ψ)) > 0 and13

Leb(W (ψ)) > 0 =⇒ Leb(W (ψ)) = 1.14

1.8. Cassels’ zero-one law. In this subsection we prove15

Theorem 1.19. Leb(W (ψ)) = 0 or 1.16

Though we use the non-increasing feature of ψ below, this assumption can be removed17

without much effort.18

Choose a bijection n 7→ λn from Z+ to Q. For a rational number x, find coprime19

integers p, q with q > 0 (if p = 0, we set q := 1) such that x = p

q
and define Ψred(x) :=20

q−1ψ(q). One can check that21

W (ψ) =Wred(ψ) := {x ∈ [0, 1) | |x− λn| < Ψred(λn) for i.m. n} .
For k,N ∈ Z+, let22

Ek :=

{

x ∈ [0, 1)

∣

∣

∣

∣

|x− λn| <
1

k
Ψred(λn) for i.m. n

}

,

ENk :=

{

x ∈ [0, 1)

∣

∣

∣

∣

|x− λn| <
1

k
Ψred(λn) for some n > N

}

.

Also let E∞ :=
⋂

Ek. So E1 =Wred(ψ) and Ek =
⋂∞
N=1E

N
k . Theorem 1.19 would follow23

from the following three lemmas.24

For a positive integer n and x ∈ [0, 1), define Tn(x) to be the unique element in [0, 1)25

such that Tn(x)− nx ∈ Z.26

Lemma 1.20. For every k ∈ Z+, Tk(E∞) ⊂ E1.27

Proof. For x ∈ Ek with |x−λn| < k−1Ψred(λn), then |kx− kλn| < Ψred(λn) ≤ Ψred(kλn).28

Thus kx ∈ E1. �29

Lemma 1.21. For every measurable set E ⊂ [0, 1) with Leb(E) > 0, for every ε > 0,30

there exists N ∈ Z+ such that31

Leb (TN (E)) > 1− ε.
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Let I(x, δ) := (x−δ, x+δ). We will need Lebesgue’s density theorem (see e.g. chapter 3,1

Theorem 1.4 of Stein’s book “real analysis”) for characteristic functions of Borel subsets.2

Theorem 1.22 (Lebesgue density theorem). Let f be an integrable function on [0, 1).3

Then for Lebesgue almost every x ∈ [0, 1), one has4

lim
ε→)+

1

2ε

∫ x+ε

x−ε

f(t) Leb(t) = f(x).

Proof. By Lebesgue density theorem, find θ∗ ∈ E such that for any ε > 0, there exists5

η∗ > 0 such that for every 0 < η < η∗,6

Leb(E ∩ I(θ∗, η))

2η
> 1− ε.

Now choose η = 1
2N for N ∈ Z+ large such that the above inequality holds. Then7

Leb

(

NE ∩ (Nθ∗ − 1

2
, Nθ∗ +

1

2
)

)

> 1− ε.

By reducing modulo Z, we get Leb(TN (E)) > 1− ε. �8

Lemma 1.23. For every k ∈ Z+, Leb(E1 \ Ek) = 0. Consequently, Leb(E∞) > 0 if9

Leb(E1) > 0.10

Proof. To save notation write αn := Φred(λn) in the proof. Assume Leb(E1 \ Ek) > 0,11

find N ∈ Z+ large enough such that Leb(E1 \ ENk ) > 0.12

By Lebesgue density theorem again, we find θ∗6=0 ∈ E1 such that for every ε > 0, there13

exists η∗(ε) > 0 such that for every 0 < η < η∗(ε), one has14

Leb
(

I(θ∗, η) ∩ ENk
)

< εLeb ( I(θ∗, η) ) . (3)

We take ε := 1
2(k+1) and write η∗ := η∗(ε). Take n sufficiently large (that is, n > N and15

2αn < η∗) such that16

|θ∗ − λn| < αn.

By definition, one has I
(

λn,
1
k
αn
)

⊂ ENk . Let η := |θ∗ − λn|+ 1
k
αn, which is smaller than17

η∗. Also, I(λn,
1
k
αn) ⊂ I(θ∗, η). Hence,18

Leb( I(λn,
αn

k
) )

Leb( I(θ∗, η) )
=
αn/k

η
>

αn/k

αn + αn/k
=

1

1 + k

=⇒ Leb
(

I(θ∗, η) ∩ ENk
)

>
1

1 + k
Leb( I(θ∗, η) ),

which is a contradiction against Equa.(3). �19

Proof of Theorem 1.19. Assume Leb(E1) > 0 and want to show Leb(E1) = 1. By Lemma20

1.23, Leb(E∞) > 0. Apply Lemma 1.21 to E = E∞, we get Leb(
⋃

n∈Z+ Tn(E∞)) = 1.21

But this set is contained in E1 by Lemma 1.20. So we obtain Leb(E1) = 1 and we are22

done. �23

1.9. Partial converse to Borel–Cantelli. The proof of the divergence part is more24

difficult partly because the converse to the Borel–Cantelli lemma is not true. However,25

we do have a partial converse assuming certain independence properties for the sequence26

of sets (En).27

Lemma 1.24. Let (En) be a sequence of measurable subsets of [0, 1). Then for every28

pair of integers 0 < m < n, we have29

Leb(
n
⋃

i=m

Ei) ≥

(

n
∑

i=m

Leb(Ei)

)2

n
∑

i=m

n
∑

j=m

Leb(Ei ∩ Ej)
. (4)

Proof. This is a consequence of Cauchy-Schwarz.30

(

∫ 1

0

(

n
∑

i=m

1Ei

)

· (1∪n

i=m
Ei
) Leb

)2

≤
∫ 1

0

(

n
∑

i=m

1Ei

)2

Leb ·
∫ 1

0

12
∪n

i=m
Ei

Leb
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For the left hand side one has:1

(

∫ 1

0

(

n
∑

i=m

1Ei

)

· (1∪n

i=m
Ei
) Leb

)2

=

(

n
∑

i=m

Leb(Ei)

)2

,

and for the right hand side:2

∫ 1

0

(

n
∑

i=m

1Ei

)2

Leb ·
∫ 1

0

12
∪n

i=m
Ei

Leb =

n
∑

i,j=m

Leb(Ei ∩ Ej) · Leb
(

n
⋃

i=m

Ei

)

.

Putting them together finishes the proof. �3

From this lemma, one can easily prove the following converse to Borel–Cantelli.4

Lemma 1.25. Let (En)n∈Z+ be a sequence of measurable subsets of [0, 1) such that5
∑

Leb(En) < ∞. Assume furthermore that Leb(Ei ∩ Ej) = Leb(Ei) Leb(Ej) for ev-6

ery i 6= j (namely, En’s are independent from each other). Then7

Leb ({x ∈ En for i.m. n}) = 1.

However, our sets are not independent. Nevertheless, we will be able to find a lower8

bound for the RHS of Equa.(4), which shows that W (ψ) has positive Lebesgue measure.9

Our proof is then complete by invoking Theorem 1.19.10

1.10. A reduction. Let ψ1(n) := min{ψ(n), 1
n
}. As W (ψ1) ⊂ W (ψ), it suffices to show11

that Leb(W (ψ1)) = 1.12

Lemma 1.26.
∑

ψ1(n) = +∞.13

Remark 1.27. It is not true in general that for two non-increasing sequence (an) and14

(bn) of positive real numbers,
∑

an =
∑

bn = +∞ would imply
∑

min{an, bn} = +∞.15

Proof. Assuming
∑

ψ1(n) < +∞, we will show that
∑

ψ(n) < +∞, which is a contra-16

diction.17

Decompose Z+ \ {1} = I ⊔ J such that18

i ∈ I ⇐⇒ ψ(n) ≤ 1

n
, i ∈ J ⇐⇒ ψ(n) >

1

n
.

Thus
∑

I ψ(n) < +∞ and
∑

J
1
n
< +∞. Decompose J =

⊔

i∈Z+ Ji where Ji = {ai, ai +19

1, ..., bi} and bi + 1 < ai+1. Therefore20

+∞ >
∑

n∈J

1

n
>
∑

i∈Z+

∫ bi+1

ai

1

x
dx = log

(

bi + 1

ai

)

.

On the other hand,21

∑

n∈J

ψ(n) =
∑

i

∑

j∈Ji

ψ(n) ≤
∑

i

∑

j∈Ji

ψ(ai − 1) =
∑

i

∑

j∈Ji

1

ai − 1
=
∑

i

bi − (ai − 1)

ai − 1
.

Define λi :=
bi

ai−1 −1 > 0 for every i ∈ Z+, then
∑

n∈J ψ(n) ≤
∑

λi, which will be shown22

to be convergent.23

Note that (for ai > 1)24

bi + 1

ai
− 1 >

1

2
(

bi
ai − 1

− 1).

Indeed for p
q
> 1 with q > 1, one has p+1

q+1−1 > 1
2 (
p

q
−1). Since this, after the denominators25

are cleared, is equivalent to (q − 1)(p+ q) > 0.26

So we have
∑

log(1 + 1
2λi) is convergent. This implies that

∑

λi is convergent by27

Lemma 1.28. �28

Lemma 1.28. Let (λn) be a sequence of non-negative real numbers, one has that29

∑

λn < +∞ ⇐⇒
∑

ln(1 + λn) < +∞.

Proof. Note that we may assume that (λn) tends to 0 for otherwise both sides are diver-30

gent. For x ≥ 0, ln(1 + x) ≤ x. Conversely, for x sufficiently small, ln(1 + x) > 1
2x. So31

we are done. �32

In light of Lemma 1.26, we will assume ψ(n) ≤ 1
2n in the next subsection.33
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1.11. Quasi-independence. For this subsection, define1

En :=

2n−1
⋃

q=2n−1

⋃

p∈{1,...,q},gcd(p,q)=1

I

(

p

q
,
ψ(2n)

2n

)

.

As ψ(n) ≤ 1
2n , one can check that for every two distinct indices (p, q), (p′, q′) appearing2

above,3

I

(

p

q
,
ψ(2n)

2n

)

∩ I

(

p′

q′
,
ψ(2n)

2n

)

= ∅.

Also, since ψ(2n)
2n ≤ ψ(q)

q
, the set En is contained in4

Wn(ψ) :=

{

x ∈ [0, 1)

∣

∣

∣

∣

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

< Ψred(
p

q
) for some 2n−1 ≤ q ≤ 2n − 1

}

.

Thus, if x belongs to En infinitely many n’s, then x belongs to W (ψ). Therefore, it5

suffices to prove that6

• RHS of Equa.(4) for such (Ei) has a lower bound independent of M and for N7

large enough, i.e., there exists C > 0 such that for every M , for N large enough8

N
∑

i,j=M

Leb(Ei ∩ Ej) ≤ C

(

N
∑

i=M

Leb(Ei)

)2

;

• ∑Leb(En) = +∞.9

Let φ be Euler’s totient function. Namely, for a positive integer N , φ(N) := |(Z/NZ)×|10

is the number of integers in {1, ..., N} that are coprime to N . Firstly we have11

Leb(En) =

(

2 · ψ(2
n)

2n

)

·
2n−1
∑

q=2n−1

φ(q). (5)

Then estimate the Lebesgue measure of Em ∩ En for m < n. For (a, b) (resp. (c, d))12

appearing in the index of Em (resp. En), one has13

Leb

(

I(
a

b
,
ψ(2m)

2m
) ∩ I(

c

d
,
ψ(2n)

2n
)

)

≤ Leb

(

I(
c

d
,
ψ(2n)

2n
)

)

= 2
ψ(2n)

2n
.

For distinct (c1, d1), (c2, d2) appearing in the index of En, one has14

∣

∣

∣

∣

c1
d1

− c2
d2

∣

∣

∣

∣

=

∣

∣

∣

∣

c1d2 − c2d1
d1d2

∣

∣

∣

∣

≥ 1

d1d2
≥ 1

22n
.

Thus, for every fixed (a, b) appearing in the index of Em, the number of (c, d) appearing15

in the index of En such that I(a
b
, ψ(2

m)
2m ) ∩ I( c

d
, ψ(2

n)
2n ) 6= ∅ is at most16

2ψ(2
m)

2m

1
2

1
22n

+ 2 = 4 · 22n · ψ(2
m)

2m
+ 2.

Therefore,17

Leb(Em ∩ En) ≤
(

2
ψ(2n)

2n

)

·
(

4 · 22n · ψ(2
m)

2m
+ 2

)

·





2m−1
∑

q=2m−1

φ(q)





Combining with Equa.(5), one has (for m < n)18

Leb(Em∩En) ≤ 2 · 22n
∑2n−1
q=2n−1 φ(q)

·Leb(En) Leb(Em)+

(

4
ψ(2n)

2n

)

·





2m−1
∑

q=2m−1

φ(q)



 . (6)

Before proceeding further, note two consequences of Lemma 1.29 to be presented in19

the next subsection. There exists a constant C > 0 such that for all positive integers k,20

22k ≤ C ·
2k−1
∑

q=2k−1

φ(q);

21

2k−1−1
∑

q=1

φ(q) ≤ C ·
2k−1
∑

q=2k−1

φ(q).
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The first inequality and Equa.(5) imply that1

N
∑

n=1

Leb(En) ≥
N
∑

n=1

2C−12nψ(2n) ≥ 2C−1
N
∑

n=1

2n+1−1
∑

q=2n

ψ(q) =

2N+1−1
∑

q=2

ψ(q)

which diverges to +∞.2

Take two positive integers M < N .3

Now we go back to Equa.(6) and sum over m < n,m, n =M, ..., N . The first summand4

in Equa.(6) is bounded from above by5

∑

m<n,m,n=M,...,N

2C Leb(Em) Leb(En)

whereas the second summand is6

N
∑

n=M

4
ψ(2n)

2n

2n−1−1
∑

q=2M−1

φ(q) ≤
N
∑

n=M

C Leb(En).

Consequently,7

∑

m,n=M,...,N

Leb(Em ∩ En) ≤ 2C
∑

m,n=M,...,N

Leb(Em) Leb(En) + 3C

N
∑

n=M

Leb(En)

= 2C

(

N
∑

n=M

Leb(En)

)2

+ 3C

N
∑

n=M

Leb(En).

Since
∑

Leb(En) diverges, there exists C ′ > 0 (independent of M) such that8

N
∑

n=M

Leb(En) < C ′

(

N
∑

n=M

Leb(En)

)2

for all N large enough. Thus9

∑

m,n=M,...,N

Leb(Em ∩ En) ≤ C ′′

(

N
∑

n=M

Leb(En)

)2

for some C ′′ > 0 and N large enough, completing the proof.10

1.12. Average of Euler’s totient function.11

Lemma 1.29. For any integer N ≥ e, one has12

∣

∣

∣

∣

∣

N
∑

n=1

φ(n)− 1

2ζ(2)
N2

∣

∣

∣

∣

∣

≤ 5N lnN

where ζ(s) :=
∑

n∈Z+
1
ns is the usual Riemann zeta function.13

One may note that
∑

φ(n) is counting primitive integral vectors in a cone.14

The proof is based on “Fubini”, “change of variable” and the Mobius function:15

Definition 1.30. Decompose a positive integer n 6= 1 into products of distinct prime16

numbers n =
∏k

i=1 p
di
i with di ∈ Z+ and k ∈ Z+. Define the Mobius function µ : Z+ →17

{−1, 0, 1} by18

µ(n) =











(−1)k if n 6= 1, di = 1 for every i;

1 if n = 1;

0 otherwise.

Lemma 1.31. For n ∈ Z+, one has19

∑

d|n

µ(n) =

{

0 n 6= 1

1 n = 1

Proof. 0 = (1− 1)n =
∑
(

n

j

)

(−1)j =
∑

d|n µ(n). �20
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Lemma 1.32.
∑

d∈Z+

µ(d)

d2
·
∑

n∈Z+

1

n2
= 1, or equivalently,

∑

d∈Z+

µ(d)

d2
= ζ(2)−1.

Proof. Expand the product and apply the lemma above. �1

Proof of Lemma 1.29.

N
∑

n=1

φ(n) =

N
∑

n=1

∑

m=1,...,n; (m,n)=1

1 =

N
∑

n=1

n
∑

m=1

∑

d|(m,n)

µ(d)

=

N
∑

n=1

∑

d|n

∑

m=1,...,n; d|m

µ(d) =

N
∑

n=1

∑

d|n

n

d
µ(d)

=
∑

{(m,d), md≤N}

mµ(d) =

N
∑

d=1

µ(d)

⌊N

d
⌋

∑

m=1

m

=
N
∑

d=1

µ(d)

(

1

2

N2

d2
+ error1(d)

)

where2

|error1(d)| =

∣

∣

∣

∣

∣

∣

∫ ⌊N

d
⌋

0

xdx +

∫ N

d

⌊N

d
⌋

xdx−
⌊N

d
⌋

∑

m=1

m

∣

∣

∣

∣

∣

∣

≤ 1

2

N

d
+
N

d
≤ 2

N

d
.

So if N ≥ e,3

∣

∣

∣

∣

∣

N
∑

d=1

error1(d)

∣

∣

∣

∣

∣

≤
N
∑

d=1

2
N

d
≤ 2N

(

1 +
N
∑

d=2

1

d
−
∫ N

1

1

x
dx

)

≤ 2N(ln(N) + 1) ≤ 4N ln(N).

Therefore,4

N
∑

n=1

φ(n) =
N2

2

+∞
∑

d=1

µ(d)

d2
+ error2(d)

with5

|error2(d)| ≤ 4N ln(N) +
N2

2

∞
∑

d=N+1

1

d2
≤ 4N ln(N) +

N2

2

∫ ∞

N

1

x2
dx ≤ 5N ln(N)

if N ≥ e.6

�7
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