习题二

April 28， 2024

选取五道题解答。截止日期：5月17日课前。中英文皆可。你们可以互相讨论（当然，我希望你们互相讨论！），或者查阅资料。但是写在纸上／latex这一过程请务必独立完成。

From Exercises A to J，let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function with $f(\mathbf{0})=0$ ．You are allowed to take $n=2$（or $n=3$ ）when working on these exercises since we did not define X_{n} for $n \geq 4$ in the class．Define

$$
H_{f}:=\left\{h \in \mathbf{S L}_{n}(\mathbb{R}) \mid f(h . \mathbf{v})=f(\mathbf{v}), \forall \mathbf{v} \in \mathbb{R}^{n}\right\}
$$

Also，

$$
\begin{aligned}
m^{*}(f) & :=\inf \left\{|f(\mathbf{v})| \mid \mathbf{v} \in \mathbb{Z}^{n} \backslash\{\mathbf{0}\}\right\} \\
m^{* *}(f) & :=\inf \left\{|f(\mathbf{v})| \mid \mathbf{v} \in \mathbb{Z}^{n}, f(\mathbf{v}) \neq 0\right\}
\end{aligned}
$$

Exercise A．If $H_{f} \cdot \mathbb{Z}^{n}$ is unbounded in X_{n} ，then $m^{*}(f)=0$ ．
Exercise B．If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is surjective and $H_{f} . \mathbb{Z}^{n}$ is dense in X_{n} ，then $f\left(\mathbb{Z}^{n}\right)$ is dense in \mathbb{R} ．

For

$$
\sigma \in S_{3}:=\{\text { bijections from }\{1,2,3\} \text { to }\{1,2,3\}\}
$$

let $M(\sigma) \in \mathbf{S L}_{3}(\mathbb{R})$ be defined by specifying the elements on the i－th row and j－th column：

$$
M(\sigma)_{i j}:= \begin{cases}\operatorname{sgn}(\sigma) & \text { if } \sigma(j)=i \\ 0 & \text { otherwise }\end{cases}
$$

where $\operatorname{sgn}(\sigma) \in\{1,-1\}$ denotes the usual signature of a permutation as you learned in linear algebra．Alternatively，$M(\sigma) \mathbf{e}_{i}=\operatorname{sgn}(\sigma) \mathbf{e}_{\sigma(i)}$ for $i=1,2,3$ where $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ denotes the standard basis of \mathbb{R}^{3} ．Note that

$$
W_{3}:=\left\{M(\sigma) \mid \sigma \in S_{3}\right\}
$$

is a subgroup of $\mathbf{S L}_{3}(\mathbb{R})$ normalizing

$$
D:=\left\{\left.\left[\begin{array}{ccc}
t_{1} & 0 & 0 \\
0 & t_{2} & 0 \\
0 & 0 & t_{3}
\end{array}\right] \right\rvert\, t_{1}, t_{2}, t_{3} \in \mathbb{R}, t_{1} \cdot t_{2} \cdot t_{3}=1\right\}
$$

Thus $W_{3} \cdot D=D \cdot W_{3}$ is a subgroup of $\mathbf{S L}_{3}(\mathbb{R})$ ．Let $\mathrm{Nm}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $\operatorname{Nm}(x, y, z):=x y z$ ．

Exercise C．Show that $H_{\mathrm{Nm}}=W_{3} \cdot D$ ．
Exercise D．Show that $H_{\mathrm{Nm}} \cdot \mathbb{Z}^{3}$ is unbounded in X_{3} ，yet $m^{* *}(\mathrm{Nm}) \neq 0$ ．
We say that
（S1） f has property（S1）iff for every $\varepsilon>0$ ，there exists $\delta>0$ such that for every $\mathbf{v} \in \mathbb{R}^{n}$ with $0<|f(\mathbf{v})|<\delta$ ，there exists $h \in H_{f}$ such that $\|h . x\|<\varepsilon$ ；
(S2) f has property (S2) iff for every $\varepsilon>0$, there exists $\delta>0$ such that for every $\mathbf{v} \in \mathbb{R}^{n}$ with $0 \leq|f(\mathbf{v})|<\delta$, there exists $h \in H_{f}$ such that $\|h . x\|<\varepsilon$.

Exercise E. Assume f has property (S2), then $m^{*}(f)=0$ implies that $H_{f} \cdot \mathbb{Z}^{n}$ is unbounded in X_{n}.

Exercise F. Assume f has property (S1), then $m^{* *}(f)=0$ implies that $H_{f} \cdot \mathbb{Z}^{n}$ is unbounded in X_{n}.

Let $\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $\pi(x, y):=x$.
Exercise G. Show that

$$
H_{\pi}=\left\{\left.\left[\begin{array}{ll}
1 & 0 \\
r & 1
\end{array}\right] \right\rvert\, r \in \mathbb{R}\right\} .
$$

Exercise H. The function π defined above has property (S1) but not (S2). Also, $m^{*}(\pi)=$ 0 but $H_{\pi} \cdot \mathbb{Z}^{2}$ is bounded in X_{2}.

Let $Q_{0}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $Q_{0}(x, y, z):=x^{2}+y^{2}-z^{2}$.
Exercise I. The function Q_{0} satisfies property (S2).
Exercise J. Let $f(x, y):=(x-\sqrt{2} y)(x+(\sqrt{2}+1) y)$. Show that $m^{*}(f) \neq 0^{1}$.
Let d denote your favorite metric on X_{2} compatible with the topology. For instance, you can take the one defined in the class.

Exercise K. Let $\mathbf{a}_{t}:=\left[\begin{array}{cc}e^{t} & 0 \\ 0 & e^{-t}\end{array}\right]$. Assume $x \in \mathrm{X}_{2}$ is such that

$$
\left\{\mathbf{a}_{t} \cdot x \mid t \geq 0\right\} \subset \mathrm{X}_{2}
$$

is bounded. Take another $y \in \mathrm{X}_{2}$. Show that the following two are equivalent
(1) $\lim _{t \rightarrow+\infty} d\left(\mathbf{a}_{t} \cdot x, \mathbf{a}_{t} \cdot y\right)$ exists and is 0 ;
(2) $y=\left[\begin{array}{ll}1 & 0 \\ r & 1\end{array}\right]$.x for some $r \in \mathbb{R}$.

Exercise L. Find an irrational number α and $\varepsilon_{0}>0$ such that $\left\langle 2^{n} \alpha\right\rangle>\varepsilon_{0}$ for all $n \in \mathbb{Z}_{\geq 0}$.

On the other hand, Furstenberg's theorem asserts that if α is an irrational number, then $\left\{2^{n} 3^{m} \alpha, n, m \in \mathbb{Z}_{>0}\right\}$ is dense modulo \mathbb{Z}. The following few exercises is to walk you through a proof of this fact ${ }^{2}$.

Order the set $\left\{2^{n} 3^{m}, n, m \in \mathbb{Z}_{\geq 0}\right\}$ as

$$
\left\{2^{n} 3^{m}, n, m \in \mathbb{Z}_{\geq 0}\right\}=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}
$$

Exercise M. Let α be an irrational number. Show that for every $\varepsilon>0$, there exists $n, m \in \mathbb{Z}^{+}$such that

$$
0<n \alpha-m<\varepsilon
$$

Exercise N. Show that $\lim _{n} \frac{a_{n+1}}{a_{n}}=1$.
Hint: apply the proceeding exercise to $\log (2) / \log (3)$ and $\log (3) / \log (2)$.
For an integer p, let $T_{p}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be defined by $x+\mathbb{Z} \mapsto p x+\mathbb{Z}$. For an irrational number α, let C_{α} be the closure of the set

$$
\left\{T_{2}^{n} T_{3}^{m}(\alpha+\mathbb{Z}) \mid n, m \in \mathbb{Z}_{\geq 0}\right\}=\left\{2^{n} 3^{m} \alpha+\mathbb{Z} \mid n, m \in \mathbb{Z}_{\geq 0}\right\} \subset \mathbb{R} / \mathbb{Z}
$$

Exercise O. Take α, an irrational number. Show that there exists $\left(\varepsilon_{n}\right) \subset C_{\alpha}-C_{\alpha}$, $\varepsilon_{n} \neq 0+\mathbb{Z}$ such that $\lim _{n} \varepsilon_{n}=0+\mathbb{Z}$.

[^0]Exercise P. Take α, an irrational number. Show that $C_{\alpha}-C_{\alpha}=\mathbb{R} / \mathbb{Z}$. Namely, for every $x+\mathbb{Z} \in \mathbb{R} / \mathbb{Z}$, there exists $a+\mathbb{Z}, b+\mathbb{Z} \in C_{\alpha}$ such that $a-b \equiv x(\bmod \mathbb{Z})$.

Hint: Use the Exercise O and N.
For $l \in \mathbb{Z}^{+}$that is coprime to 2,3 , define

$$
\Sigma_{l}:=\left\{2^{n} 3^{m} \mid n, m \in \mathbb{Z}_{\geq 0}, 2^{n} 3^{m} \equiv 1(\bmod l)\right\}
$$

And order Σ_{l} as

$$
\Sigma_{l}=\left\{a_{1}^{(l)}<a_{2}^{(l)}<a_{3}^{(l)}<\ldots\right\}
$$

Exercise Q. For $l \in \mathbb{Z}^{+}$that is coprime to $2,3, \lim _{n} \frac{a_{n+1}^{(l)}}{a_{n}^{(l)}}=1$.
Exercise R. Take an irrational number α. If C_{α} contains a rational number modulo \mathbb{Z}, then $C_{\alpha}=\mathbb{R} / \mathbb{Z}$.

Hint: similar to the proof of Exercise P. Maybe you also need Exercise Q in the place of Exercise N.

Exercise S. Let α be an irrational number. Show that C_{α} must contain a rational point modulo \mathbb{Z}.

Hint: If C_{α} does not contain any rational number, then for every $l \in \mathbb{Z}^{+}$, show that ${ }^{3}$

$$
\begin{equation*}
C_{\alpha} \cap\left(C_{\alpha}-\frac{1}{5^{l}}\right) \cap\left(C_{\alpha}-\frac{2}{5^{l}}\right) \cap \ldots \cap\left(C_{\alpha}-\frac{5^{l}-1}{5^{l}}\right) \neq \emptyset \tag{1}
\end{equation*}
$$

How to show this? Certainly, $C_{\alpha} \cap\left(C_{\alpha}-\frac{1}{5^{\imath}}\right)$ is non-empty by Exercise P. Call $D_{1}:=$ $C_{\alpha} \cap\left(C_{\alpha}-\frac{1}{5^{l}}\right)$. Note that

$$
C_{\alpha} \cap\left(C_{\alpha}-\frac{1}{5^{l}}\right) \cap\left(C_{\alpha}-\frac{2}{5^{l}}\right)=D_{1} \cap\left(D_{1}-\frac{1}{5^{l}}\right) .
$$

On the other hand D_{1} is invariant under $\left\{T_{n}, n \in \Sigma_{5^{l}}\right\}$. If it does not contain any rational point, then you can show that, just as Exercise $\mathrm{P}, D_{1}-D_{1}=\mathbb{R} / \mathbb{Z}$. In particular $D_{1} \cap\left(D_{1}-\frac{1}{5^{\imath}}\right)$ is non-empty. Equa.(1) can be verified by repeating this process.

[^1]
[^0]: ${ }^{1}$ This shows that Oppenheim conjecture fails in two variables.
 ${ }^{2}$ if you manage to give a proof without doing any of the following exercises, you would still earn the full credit.

[^1]: ${ }^{3}$ Here $"-\frac{1}{5^{l} "}$ should be understood as modulo \mathbb{Z}.

