习题二

April 28, 2024

选取五道题解答。截止日期: 5 月 17 日课前。中英文皆可。你们可以互相 讨论 (当然, 我希望你们互相讨论!), 或者查阅资料。但是写在纸上/latex 这一过程请务必独立完成。

From Exercises A to J, let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function with $f(\mathbf{0}) = 0$. You are allowed to take n = 2 (or n = 3) when working on these exercises since we did not define X_n for $n \ge 4$ in the class. Define

$$H_f := \{h \in \mathbf{SL}_n(\mathbb{R}) \mid f(h.\mathbf{v}) = f(\mathbf{v}), \ \forall \, \mathbf{v} \in \mathbb{R}^n \}.$$

Also,

$$m^*(f) := \inf \{ |f(\mathbf{v})| \mid \mathbf{v} \in \mathbb{Z}^n \setminus \{\mathbf{0}\} \}$$
$$m^{**}(f) := \inf \{ |f(\mathbf{v})| \mid \mathbf{v} \in \mathbb{Z}^n, \ f(\mathbf{v}) \neq 0 \}.$$

Exercise A. If $H_f \mathbb{Z}^n$ is unbounded in X_n , then $m^*(f) = 0$.

Exercise B. If $f : \mathbb{R}^n \to \mathbb{R}$ is surjective and $H_f.\mathbb{Z}^n$ is dense in X_n , then $f(\mathbb{Z}^n)$ is dense in \mathbb{R} .

For

$$\sigma \in S_3 := \{ \text{bijections from } \{1, 2, 3\} \text{ to } \{1, 2, 3\} \},\$$

let $M(\sigma) \in \mathbf{SL}_3(\mathbb{R})$ be defined by specifying the elements on the *i*-th row and *j*-th column:

$$M(\sigma)_{ij} := \begin{cases} \operatorname{sgn}(\sigma) & \text{if } \sigma(j) = i; \\ 0 & \text{otherwise} \end{cases}$$

where $\operatorname{sgn}(\sigma) \in \{1, -1\}$ denotes the usual signature of a permutation as you learned in linear algebra. Alternatively, $M(\sigma)\mathbf{e}_i = \operatorname{sgn}(\sigma)\mathbf{e}_{\sigma(i)}$ for i = 1, 2, 3 where $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ denotes the standard basis of \mathbb{R}^3 . Note that

$$W_3 := \{ M(\sigma) \mid \sigma \in S_3 \}$$

is a subgroup of $\mathbf{SL}_3(\mathbb{R})$ normalizing

$$D := \left\{ \left[\begin{array}{ccc} t_1 & 0 & 0 \\ 0 & t_2 & 0 \\ 0 & 0 & t_3 \end{array} \right] \middle| t_1, t_2, t_3 \in \mathbb{R}, \ t_1 \cdot t_2 \cdot t_3 = 1 \right\}.$$

Thus $W_3 \cdot D = D \cdot W_3$ is a subgroup of $\mathbf{SL}_3(\mathbb{R})$. Let $\operatorname{Nm} : \mathbb{R}^3 \to \mathbb{R}$ be defined by $\operatorname{Nm}(x, y, z) := xyz$.

Exercise C. Show that $H_{\text{Nm}} = W_3 \cdot D$.

Exercise D. Show that $H_{\text{Nm}}.\mathbb{Z}^3$ is unbounded in X_3 , yet $m^{**}(\text{Nm}) \neq 0$.

We say that

(S1) f has property (S1) iff for every $\varepsilon > 0$, there exists $\delta > 0$ such that for every $\mathbf{v} \in \mathbb{R}^n$ with $0 < |f(\mathbf{v})| < \delta$, there exists $h \in H_f$ such that $||h.x|| < \varepsilon$; (S2) f has property (S2) iff for every $\varepsilon > 0$, there exists $\delta > 0$ such that for every $\mathbf{v} \in \mathbb{R}^n$ with $0 \le |f(\mathbf{v})| < \delta$, there exists $h \in H_f$ such that $||h.x|| < \varepsilon$.

Exercise E. Assume f has property (S2), then $m^*(f) = 0$ implies that $H_f.\mathbb{Z}^n$ is unbounded in X_n .

Exercise F. Assume f has property (S1), then $m^{**}(f) = 0$ implies that $H_f.\mathbb{Z}^n$ is unbounded in X_n .

Let $\pi : \mathbb{R}^2 \to \mathbb{R}$ be defined by $\pi(x, y) := x$.

Exercise G. Show that

$$H_{\pi} = \left\{ \left[\begin{array}{cc} 1 & 0 \\ r & 1 \end{array} \right] \middle| r \in \mathbb{R} \right\}.$$

Exercise H. The function π defined above has property (S1) but not (S2). Also, $m^*(\pi) = 0$ but $H_{\pi}.\mathbb{Z}^2$ is bounded in X_2 .

Let $Q_0 : \mathbb{R}^3 \to \mathbb{R}$ defined by $Q_0(x, y, z) := x^2 + y^2 - z^2$.

Exercise I. The function Q_0 satisfies property (S2).

Exercise J. Let $f(x,y) := (x - \sqrt{2}y)(x + (\sqrt{2} + 1)y)$. Show that $m^*(f) \neq 0^1$.

Let d denote your favorite metric on X_2 compatible with the topology. For instance, you can take the one defined in the class.

Exercise K. Let
$$\mathbf{a}_t := \begin{bmatrix} e^t & 0\\ 0 & e^{-t} \end{bmatrix}$$
. Assume $x \in X_2$ is such that $\{\mathbf{a}_t . x \mid t \ge 0\} \subset X_2$

is bounded. Take another $y \in X_2$. Show that the following two are equivalent

(1) $\lim_{t \to +\infty} d(\mathbf{a}_t.x, \mathbf{a}_t.y)$ exists and is 0; (2) $y = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix}$.x for some $r \in \mathbb{R}$.

Exercise L. Find an irrational number α and $\varepsilon_0 > 0$ such that $\langle 2^n \alpha \rangle > \varepsilon_0$ for all $n \in \mathbb{Z}_{>0}$.

On the other hand, Furstenberg's theorem asserts that if α is an irrational number, then $\{2^n 3^m \alpha, n, m \in \mathbb{Z}_{\geq 0}\}$ is dense modulo \mathbb{Z} . The following few exercises is to walk you through a proof of this fact².

Order the set $\{2^n 3^m, n, m \in \mathbb{Z}_{\geq 0}\}$ as

$$\{2^n 3^m, n, m \in \mathbb{Z}_{>0}\} = \{a_1 < a_2 < a_3 < ...\}$$

Exercise M. Let α be an irrational number. Show that for every $\varepsilon > 0$, there exists $n, m \in \mathbb{Z}^+$ such that

$$0 < n\alpha - m < \varepsilon.$$

Exercise N. Show that $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$.

Hint: apply the proceeding exercise to $\log(2)/\log(3)$ and $\log(3)/\log(2)$.

For an integer p, let $T_p : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ be defined by $x + \mathbb{Z} \mapsto px + \mathbb{Z}$. For an irrational number α , let C_{α} be the closure of the set

$$\{T_2^n T_3^m(\alpha + \mathbb{Z}) \mid n, m \in \mathbb{Z}_{\geq 0}\} = \{2^n 3^m \alpha + \mathbb{Z} \mid n, m \in \mathbb{Z}_{\geq 0}\} \subset \mathbb{R}/\mathbb{Z}.$$

Exercise O. Take α , an irrational number. Show that there exists $(\varepsilon_n) \subset C_{\alpha} - C_{\alpha}$, $\varepsilon_n \neq 0 + \mathbb{Z}$ such that $\lim_n \varepsilon_n = 0 + \mathbb{Z}$.

¹This shows that Oppenheim conjecture fails in two variables.

 $^{^{2}\}mathrm{if}$ you manage to give a proof without doing any of the following exercises, you would still earn the full credit.

Exercise P. Take α , an irrational number. Show that $C_{\alpha} - C_{\alpha} = \mathbb{R}/\mathbb{Z}$. Namely, for every $x + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$, there exists $a + \mathbb{Z}, b + \mathbb{Z} \in C_{\alpha}$ such that $a - b \equiv x \pmod{\mathbb{Z}}$.

Hint: Use the Exercise O and N.

For $l \in \mathbb{Z}^+$ that is coprime to 2, 3, define

$$\Sigma_l := \{2^n 3^m \mid n, m \in \mathbb{Z}_{\ge 0}, \ 2^n 3^m \equiv 1 \pmod{l} \}.$$

And order Σ_l as

$$\Sigma_l = \{a_1^{(l)} < a_2^{(l)} < a_3^{(l)} < \dots\}$$

Exercise Q. For $l \in \mathbb{Z}^+$ that is coprime to 2, 3, $\lim_{n \to \infty} \frac{a_{n+1}^{(l)}}{a_n^{(l)}} = 1$.

Exercise R. Take an irrational number α . If C_{α} contains a rational number modulo \mathbb{Z} , then $C_{\alpha} = \mathbb{R}/\mathbb{Z}$.

Hint: similar to the proof of Exercise P. Maybe you also need Exercise Q in the place of Exercise N.

Exercise S. Let α be an irrational number. Show that C_{α} must contain a rational point modulo \mathbb{Z} .

Hint: If C_{α} does not contain any rational number, then for every $l \in \mathbb{Z}^+$, show that³

$$C_{\alpha} \cap \left(C_{\alpha} - \frac{1}{5^{l}}\right) \cap \left(C_{\alpha} - \frac{2}{5^{l}}\right) \cap \dots \cap \left(C_{\alpha} - \frac{5^{l} - 1}{5^{l}}\right) \neq \emptyset.$$
(1)

How to show this? Certainly, $C_{\alpha} \cap \left(C_{\alpha} - \frac{1}{5^{l}}\right)$ is non-empty by Exercise P. Call $D_{1} := C_{\alpha} \cap \left(C_{\alpha} - \frac{1}{5^{l}}\right)$. Note that

$$C_{\alpha} \cap (C_{\alpha} - \frac{1}{5^{l}}) \cap (C_{\alpha} - \frac{2}{5^{l}}) = D_{1} \cap \left(D_{1} - \frac{1}{5^{l}}\right).$$

On the other hand D_1 is invariant under $\{T_n, n \in \Sigma_{5^l}\}$. If it does not contain any rational point, then you can show that, just as Exercise P, $D_1 - D_1 = \mathbb{R}/\mathbb{Z}$. In particular $D_1 \cap (D_1 - \frac{1}{5^l})$ is non-empty. Equa.(1) can be verified by repeating this process.

³Here " $-\frac{1}{5l}$ " should be understood as modulo $\mathbb{Z}.$