
习题 1

March 23, 2024

选取五道题解答。截止日期：4 月 5 日课前 (如果这一周不上课就延迟到
4 月 12 日课前)。中英文皆可。你们可以互相讨论 (当然，我希望你们互
相讨论！)，或者查阅资料。但是写在纸上/latex 这一过程请务必独立完
成。
当我引用课程讲义的时候，定理的编号等是按照 https://runlinzhang.github.io/
teaching2024sp 上的版本来。

Exercise A. Prove that there exists c0 > 0 such that for every q ∈ Z+, q2〈q 3
√
2〉 > c0.

Exercise B. Prove that for n ∈ Z+, the map Tn : [0, 1) → [0, 1) defined by Tn(x)−nx ∈ Z
preserves the Lebesgue measure. Namely, for every Borel measurable subset E (not just
intervals) of [0, 1), show that Leb(T−1

n (E)) = Leb(E).

Exercise C. Prove Cassels’ zero-one law (Theorem 1.19 of “Lecture 1”) without assuming
ψ is non-increasing.

Exercise D. Find two non-increasing sequences of positive numbers (an)n∈Z+ and (bn)n∈Z+

such that
∑∞

n=1 an =
∑∞

n=1 bn = +∞ but
∑∞

n=1 min{an, bn} < +∞.

Exercise E. Prove Lemma 1.25 from “Lecture 1” using Lemma 1.24 from there.

Define (N is a positive integer)

L :=
{
(x, y) ∈ Z2

∣∣ gcd(x, y) = 1, 0 < x < y
}
,

LN := {(x, y) ∈ L | y < N} .

For every (x, y) ∈ L, define π(x, y) := (1, yx ) ∈ {1} × (0, 1). For every N ∈ Z+, define
a measure µN on {1} × (0, 1) by

µN :=
1

#LN

∑
(x,y)∈LN

δπ(x,y)

where δ(x,y) is the Dirac measure supported on (x, y) defined by

δ(x,y)(E) =

{
1 if (x, y) ∈ E

0 if (x, y) /∈ E.

Exercise F. Prove that (µN ) converges, in the weak∗ topology, to the standard Lebesgue
measure on {1} × (0, 1). For simplicity, you are only required to show the following: for
every interval (a, b) ⊂ (0, 1), one has

lim
N→∞

µN ({1} × (a, b)) = b− a.

(Hint: adapt the proof of Lemma 1.29 from “Lecture 1”.)

Definition 0.1. Two lattices Λ1,Λ2 ⊂ R2 are said to be commensurable iff Λ1 ∩Λ2 is
a finite-index subgroup in both Λ1 and Λ2.

Exercise G. Let Λ0 ∈ X2 be a unimodular lattice, then the set

{Λ ∈ X2 | Λ is commensurable with Λ0}

is dense in X2.
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Recall A =

{
at :=

[
et 0
0 e−t

] ∣∣∣∣ t ∈ R
}
.

Exercise H. Assume Λ1,Λ2 ∈ X2 are commensurable. Show that

1. (atΛ1)t>0 diverges1 iff (atΛ2)t>0 diverges;

2. A.Λ1 is bounded (i.e., closure is compact) iff A.Λ2 is bounded.

Exercise I. For ε > 0, let Bε := {x ∈ R2, ‖x‖ < ε}. Show that for any Λ ∈ X2, one has
Λ ∩B1 ⊂ Z.v for some v ∈ Λ.

Exercise J. For α ∈ [0, 1), let Λα ∈ X2 be as in the lecture notes. Show that (at.Λα)t>0

diverges iff α ∈ Q.

(Hint: you might want to use Exercise I.)

Exercise K. Use Exercise J to give another proof of the fact that for some constant C > 0,
for every irrational number α, there are infinitely many q ∈ Z+ such that q〈qα〉 < C.

Below we sketch, in the form of exercises, how to prove an inhomogeneous analogue
of this.

Definition 0.2. We define

Y2 :=
{
(Λ, v + Λ)

∣∣ Λ ∈ X2, v + Λ ∈ R2/Λ
}

An element (Λ, v+Λ) ∈ Y2
2 is referred to as a unimodular grid. A sequence (Λn, vn +

Λn) converges to (Λ, v + Λ) iff there are xn, yn, v′
n ∈ R2 and x, y, v′ ∈ R2, such that

Λn = Zxn + Zyn, vn + Λn = v′
n + Λn, Λ = Zx + Zy, v + Λ = v′ + Λ;

(xn) converges to x, (yn) converges to y, and (v′
n) converges to v.

Also note that SL2(R) acts on Y2 by (g, v + Λ) 7→ gv + gΛ.

Exercise L. Let Bε be as above. Show that for ε > 0 sufficiently small (say, ε = 0.01
should suffice), for any unimodular grid (Λ, v+Λ), one has that Bε ∩ (v+Λ) is contained
in a line (not necessarily passing through the origin).

For α, β ∈ [0, 1), define a unimodular grid by yα,β = (Λ, (β, 0)tr + Λ) ∈ Y2
3.

Exercise M. Take α, β ∈ [0, 1). The following two are equivalent:

1. for any ε > 0, there exists t0 > 0 such that for all t > t0, at.yα,β ∩Bε 6= ∅;

2. β ∈ Z+ Zα.

Exercise N. Using the above two exercises (or use any other methods you might know)
to show that for some constant C > 0, for every α, β ∈ [0, 1) with β /∈ Z+ Zα, there are
infinitely many q ∈ Z+, such that q〈qα+ β〉 < C.

Recall that in the first lecture, the homogeneous version was deduced from a theorem
of Dirichlet, which is no longer true in the inhomogeneous setting.

Exercise O. Prove that for any c > 0, there exist α, β ∈ R such that there exists infinitely
many N ∈ Z+ such that for every q ∈ {0, 1, ..., N − 1},

〈qα+ β〉 > c

N
.

Actually, maybe your proof is good enough to show the same conclusion holds replacing
∀c > 0 and c

N by any other function N 7→ ψ(N) decreasing to 0 (the choice of α, β would
depend on this ψ).

Below we give an application that does not belong to Diophantine approximation.
1i.e., for any compact subset C ⊂ X2, there exists t0 > 0 such that for all t > t0, atΛ1 /∈ C .
2this is sometimes abbreviated as v + Λ
3we take transpose of a row vector as by convention, we write vectors as column vectors
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Exercise P. Show that there exists a bounded set in X2 such that every A-orbit intersects
with that bounded set non-trivially.

(hint: you might want to use Exercise I).

Let
X(R) := {M ∈ Mat2×2(R) | det(M) = −1, Trace(M) = 0}
X(Z) := {M ∈ Mat2×2(Z) | det(M) = −1, Trace(M) = 0}

Note that SL2(R) acts on X(R) by (g,M) 7→ gMg−1. Similarly, SL2(Z) acts on X(Z).

Exercise Q. Show that the action SL2(R) ↷ X(R) is transitive.

Exercise R. Show that the action SL2(Z) ↷ X(Z) has only finitely many orbits.

(Hint: note that the stabilizer of the diagonal matrix diag(1,−1) in SL2(R) contains
A. Then use Exercise P. Of course you are welcome to use any other method.)

Essentially, Lemma 1.23 from the Lecture 2 shows that the map

SL2(R) → U := Unitary Operators on L2(X2,mX2
)

defined by g 7→ Ug with (Ug.ϕ)(x) := ϕ(g−1x) is continuous if U is equipped with the
“strong operator topology”.

Exercise S. Show that this map form SL2(R) → U is not continuous if U is equipped
with the operator norm topology.

The purpose of the following two exercises is to show you a curious calculation.

Exercise T. Define

R :=

{
(x, y) ∈ R2

∣∣∣∣ −1

2
< x <

1

2
, x2 + y2 > 1, y > 0

}
Calculate the following double integral∫

R

dxdy
y2

=
π

3
.

Exercise U. Let p be a prime number, show that # SL2(Z/pZ) = (p2 − 1)p.

(Hint: find out # GL2(Z/pZ) first.)

Remark. It is not necessary to read this, but here are some contexts about the exercises
T and U above. Exercise T shows that with respect to the volume form as defined by
“ dxdydz

|x| ”, any (strict) fundamental domain for SL2(Z) has volume π
3 × π

2 = π2

6 . With
respect to the same volume form, one can show that the volume of SL2(Zp) (p-adic
integers) is equal to p−3 |SL2(Z/pZ)| (which is equal to 1− p−2 by Exercise U). The fact
that ζ(2) = π2

6 shows that(π
3
× π

2

)
·
∏ (p2 − 1)p

p3
=
π2

6
·
∏

(1− p−2) = 1.

By putting things together we have

Vol(SL2(R)/ SL2(Z))×
∏
p

Vol(SL2(Zp)) = 1.

In adelic language, this can be restated as Vol(SL2(AQ)/ SL2(Q)) = 1.

Hopefully the next three exercises can help you understand Lemma 1.26 from “Lecture
2” better. For this purpose, let π : SL2(R) → SL2(R)/ SL2(Z) be the natural quotient
map. Recall that it is open and continuous. For x ∈ SL2(R)/ SL2(Z), define Obtx :
SL2(R) → SL2(R)/ SL2(Z) by Obtx(g) := g.x. Then Obtx is also open and continuous.

For our convenience, fix a distance function (i.e., a metric) d(·, ·) : SL2(R)×SL2(R) →
R≥0

4. For ε > 0, let BI2(ε) := {g ∈ SL2(R), d(g, I2) < ε} (recall I2 denotes the two-by-
two identity matrix).

4you can choose any metric you like as long as it is compatible with the topology.
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Exercise V. Show that for any compact subset C ⊂ SL2(R), there exists ε > 0 such that
for every h ∈ C , the map

Obtπ(h) : BI2(ε) → BI2(ε).π(h)

is bijective.

(Hint: it boils down to showing that for some η > 0, for every h ∈ C and γ ̸=I2 ∈
SL2(Z), d(hγh−1, I2) > η.

Bijection + openness + continuity imply that Obtπ(h) : BI2(ε) → BI2(ε).π(h) is a
homeomorphism.

For ε > 0, define Corε : (−ε, ε)× (−ε, ε)× (−ε, ε) → SL2(R) by

(t, s, r) 7→
[
et 0
0 e−t

]
·
[

1 0
s 1

]
·
[

1 r
0 1

]
= at · u−

s · u+
r

Exercise W. Show that for ε > 0 small enough,

1. Image(Corε) is open and that Corε : (−ε, ε)3 → Image(Corε) is a homeomorphism.

Moreover, there exists some positive continuous function λε : (−ε, ε)3 → R>0 such that

2. (Corε)∗(λε · |dtdsdr|) is equal to the restriction of mSL2(R) to Image(Corε).

(Hint: you might want to use the open set (actually a neighborhood of I2) O1 :={[
x y
z w

]
∈ SL2(R)

∣∣∣∣ x 6= 0

}
and the local coordinate

O′
1 :=

{
(x, y, z) ∈ R3

∣∣ x 6= 0
}

O1
φ1

≃

with φ1(x, y, z) :=

[
x y

z 1+yz
x

]
in the explicit construction of mSL2(R). Under this coor-

dinate, mSL2(R) was defined by (φ1)∗(
|dxdydz|

|x| ) . )

Exercise X. Combine the efforts from the above two exercises to prove that for every
C ⊂ SL2(R)/ SL2(Z) compact, there exists ε > 0 such that for every Λ ∈ SL2(R)/ SL2(Z),
there exists a continuous positive function λΛ,ε : (−ε, ε)3 → R>0 such that

(ObtΛ ◦Corε)∗ (λΛ,ε(t, s, r) |dtdsdr|)

is equal to the restriction of mX2
5 to the image of ObtΛ ◦Corε.

5When writing mX2 , we have (implicitly) identified X2 with SL2(R)/ SL2(Z).
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