习题 1

March 23, 2024

选取五道题解答。截止日期:4月5日课前(如果这一周不上课就延迟到4月12日课前)。中英文皆可。你们可以互相讨论(当然,我希望你们互相讨论!),或者查阅资料。但是写在纸上/latex这一过程请务必独立完成。

当我引用课程讲义的时候,定理的编号等是按照 https://runlinzhang.github.io/ teaching2024sp 上的版本来。

Exercise A. Prove that there exists $c_0 > 0$ such that for every $q \in \mathbb{Z}^+$, $q^2 \langle q \sqrt[3]{2} \rangle > c_0$.

Exercise B. Prove that for $n \in \mathbb{Z}^+$, the map $T_n : [0,1) \to [0,1)$ defined by $T_n(x) - nx \in \mathbb{Z}$ preserves the Lebesgue measure. Namely, for every Borel measurable subset E (not just intervals) of [0,1), show that $\operatorname{Leb}(T_n^{-1}(E)) = \operatorname{Leb}(E)$.

Exercise C. Prove Cassels' zero-one law (Theorem 1.19 of "Lecture 1") without assuming ψ is non-increasing.

Exercise D. Find two non-increasing sequences of positive numbers $(a_n)_{n\in\mathbb{Z}^+}$ and $(b_n)_{n\in\mathbb{Z}^+}$ such that $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n = +\infty$ but $\sum_{n=1}^{\infty} \min\{a_n, b_n\} < +\infty$.

Exercise E. Prove Lemma 1.25 from "Lecture 1" using Lemma 1.24 from there.

Define (N is a positive integer)

$$\mathcal{L} := \left\{ (x, y) \in \mathbb{Z}^2 \mid \gcd(x, y) = 1, \ 0 < x < y \right\},$$
$$\mathcal{L}_N := \left\{ (x, y) \in \mathcal{L} \mid y < N \right\}.$$

For every $(x, y) \in \mathcal{L}$, define $\pi(x, y) := (1, \frac{y}{x}) \in \{1\} \times (0, 1)$. For every $N \in \mathbb{Z}^+$, define a measure μ_N on $\{1\} \times (0, 1)$ by

$$\mu_N := \frac{1}{\#\mathcal{L}_N} \sum_{(x,y)\in\mathcal{L}_N} \delta_{\pi(x,y)}$$

where $\delta_{(x,y)}$ is the Dirac measure supported on (x,y) defined by

$$\delta_{(x,y)}(E) = \begin{cases} 1 & \text{if } (x,y) \in E\\ 0 & \text{if } (x,y) \notin E. \end{cases}$$

Exercise F. Prove that (μ_N) converges, in the weak* topology, to the standard Lebesgue measure on $\{1\} \times (0,1)$. For simplicity, you are only required to show the following: for every interval $(a,b) \subset (0,1)$, one has

$$\lim_{N \to \infty} \mu_N(\{1\} \times (a, b)) = b - a.$$

(Hint: adapt the proof of Lemma 1.29 from "Lecture 1".)

Definition 0.1. Two lattices $\Lambda_1, \Lambda_2 \subset \mathbb{R}^2$ are said to be **commensurable** iff $\Lambda_1 \cap \Lambda_2$ is a finite-index subgroup in both Λ_1 and Λ_2 .

Exercise G. Let $\Lambda_0 \in X_2$ be a unimodular lattice, then the set

 $\{\Lambda \in X_2 \mid \Lambda \text{ is commensurable with } \Lambda_0\}$

is dense in X_2 .

Recall A = $\left\{ \mathbf{a}_t := \begin{bmatrix} e^t & 0\\ 0 & e^{-t} \end{bmatrix} \mid t \in \mathbb{R} \right\}.$

Exercise H. Assume $\Lambda_1, \Lambda_2 \in X_2$ are commensurable. Show that

- 1. $(\mathbf{a}_t \Lambda_1)_{t>0}$ diverges¹ iff $(\mathbf{a}_t \Lambda_2)_{t>0}$ diverges;
- 2. A. Λ_1 is bounded (i.e., closure is compact) iff A. Λ_2 is bounded.

Exercise I. For $\varepsilon > 0$, let $B_{\varepsilon} := \{x \in \mathbb{R}^2, \|x\| < \varepsilon\}$. Show that for any $\Lambda \in X_2$, one has $\Lambda \cap B_1 \subset \mathbb{Z}.\mathbf{v}$ for some $\mathbf{v} \in \Lambda$.

Exercise J. For $\alpha \in [0,1)$, let $\Lambda_{\alpha} \in X_2$ be as in the lecture notes. Show that $(\mathbf{a}_t \cdot \Lambda_{\alpha})_{t>0}$ diverges iff $\alpha \in \mathbb{Q}$.

(Hint: you might want to use Exercise I.)

Exercise K. Use Exercise J to give another proof of the fact that for some constant C > 0, for every irrational number α , there are infinitely many $q \in \mathbb{Z}^+$ such that $q\langle q\alpha \rangle < C$.

Below we sketch, in the form of exercises, how to prove an inhomogeneous analogue of this.

Definition 0.2. We define

$$Y_2 := \left\{ (\Lambda, \mathbf{v} + \Lambda) \mid \Lambda \in X_2, \ \mathbf{v} + \Lambda \in \mathbb{R}^2 / \Lambda \right\}$$

An element $(\Lambda, \mathbf{v} + \Lambda) \in Y_2^2$ is referred to as a **unimodular grid**. A sequence $(\Lambda_n, \mathbf{v}_n + \Lambda_n)$ converges to $(\Lambda, \mathbf{v} + \Lambda)$ iff there are $\mathbf{x}_n, \mathbf{y}_n, \mathbf{v}'_n \in \mathbb{R}^2$ and $\mathbf{x}, \mathbf{y}, \mathbf{v}' \in \mathbb{R}^2$, such that

 $\Lambda_n = \mathbb{Z}\mathbf{x}_n + \mathbb{Z}\mathbf{y}_n, \ \mathbf{v}_n + \Lambda_n = \mathbf{v}'_n + \Lambda_n, \ \Lambda = \mathbb{Z}\mathbf{x} + \mathbb{Z}\mathbf{y}, \ \mathbf{v} + \Lambda = \mathbf{v}' + \Lambda;$ (**x**_n) converges to **x**, (**y**_n) converges to **y**, and (**v**'_n) converges to **v**.

Also note that $\mathbf{SL}_2(\mathbb{R})$ acts on Y_2 by $(g, \mathbf{v} + \Lambda) \mapsto g\mathbf{v} + g\Lambda$.

Exercise L. Let B_{ε} be as above. Show that for $\varepsilon > 0$ sufficiently small (say, $\varepsilon = 0.01$ should suffice), for any unimodular grid $(\Lambda, \mathbf{v} + \Lambda)$, one has that $B_{\varepsilon} \cap (\mathbf{v} + \Lambda)$ is contained in a line (not necessarily passing through the origin).

For $\alpha, \beta \in [0, 1)$, define a unimodular grid by $y_{\alpha, \beta} = (\Lambda, (\beta, 0)^{\text{tr}} + \Lambda) \in Y_2^3$.

Exercise M. Take $\alpha, \beta \in [0, 1)$. The following two are equivalent:

- 1. for any $\varepsilon > 0$, there exists $t_0 > 0$ such that for all $t > t_0$, $\mathbf{a}_t \cdot y_{\alpha,\beta} \cap B_{\varepsilon} \neq \emptyset$;
- 2. $\beta \in \mathbb{Z} + \mathbb{Z}\alpha$.

Exercise N. Using the above two exercises (or use any other methods you might know) to show that for some constant C > 0, for every $\alpha, \beta \in [0, 1)$ with $\beta \notin \mathbb{Z} + \mathbb{Z}\alpha$, there are infinitely many $q \in \mathbb{Z}^+$, such that $q\langle q\alpha + \beta \rangle < C$.

Recall that in the first lecture, the homogeneous version was deduced from a theorem of Dirichlet, which is no longer true in the inhomogeneous setting.

Exercise O. Prove that for any c > 0, there exist $\alpha, \beta \in \mathbb{R}$ such that there exists infinitely many $N \in \mathbb{Z}^+$ such that for every $q \in \{0, 1, ..., N-1\}$,

$$\langle q\alpha + \beta \rangle > \frac{c}{N}.$$

Actually, maybe your proof is good enough to show the same conclusion holds replacing $\forall c > 0$ and $\frac{c}{N}$ by any other function $N \mapsto \psi(N)$ decreasing to 0 (the choice of α, β would depend on this ψ).

Below we give an application that does not belong to Diophantine approximation.

¹i.e., for any compact subset $\mathscr{C} \subset \mathcal{X}_2$, there exists $t_0 > 0$ such that for all $t > t_0$, $\mathbf{a}_t \Lambda_1 \notin \mathscr{C}$.

²this is sometimes abbreviated as $\mathbf{v} + \Lambda$

 $^{^{3}}$ we take transpose of a row vector as by convention, we write vectors as column vectors

Exercise P. Show that there exists a bounded set in X_2 such that every A-orbit intersects with that bounded set non-trivially.

(hint: you might want to use Exercise I).

Let

$$X(\mathbb{R}) := \{ M \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \mid \det(M) = -1, \operatorname{Trace}(M) = 0 \}$$
$$X(\mathbb{Z}) := \{ M \in \operatorname{Mat}_{2 \times 2}(\mathbb{Z}) \mid \det(M) = -1, \operatorname{Trace}(M) = 0 \}$$

Note that $\mathbf{SL}_2(\mathbb{R})$ acts on $X(\mathbb{R})$ by $(g, M) \mapsto gMg^{-1}$. Similarly, $\mathbf{SL}_2(\mathbb{Z})$ acts on $X(\mathbb{Z})$.

Exercise Q. Show that the action $\mathbf{SL}_2(\mathbb{R}) \curvearrowright X(\mathbb{R})$ is transitive.

Exercise R. Show that the action $SL_2(\mathbb{Z}) \cap X(\mathbb{Z})$ has only finitely many orbits.

(Hint: note that the stabilizer of the diagonal matrix $\operatorname{diag}(1, -1)$ in $\operatorname{SL}_2(\mathbb{R})$ contains A. Then use Exercise P. Of course you are welcome to use any other method.)

Essentially, Lemma 1.23 from the Lecture 2 shows that the map

 $\mathbf{SL}_2(\mathbb{R}) \to \mathcal{U} := \text{Unitary Operators on } L^2(X_2, m_{X_2})$

defined by $g \mapsto U_g$ with $(U_g.\phi)(x) := \phi(g^{-1}x)$ is continuous if \mathcal{U} is equipped with the "strong operator topology".

Exercise S. Show that this map form $SL_2(\mathbb{R}) \to \mathcal{U}$ is not continuous if \mathcal{U} is equipped with the operator norm topology.

The purpose of the following two exercises is to show you a curious calculation.

Exercise T. Define

$$\mathcal{R} := \left\{ (x, y) \in \mathbb{R}^2 \ \middle| \ -\frac{1}{2} < x < \frac{1}{2}, \ x^2 + y^2 > 1, \ y > 0 \right\}$$

Calculate the following double integral

$$\int_{\mathcal{R}} \frac{\mathrm{dxdy}}{y^2} = \frac{\pi}{3}.$$

Exercise U. Let p be a prime number, show that # $\mathbf{SL}_2(\mathbb{Z}/p\mathbb{Z}) = (p^2 - 1)p$.

(Hint: find out $\# \mathbf{GL}_2(\mathbb{Z}/p\mathbb{Z})$ first.)

Remark. It is not necessary to read this, but here are some contexts about the exercises T and U above. Exercise T shows that with respect to the volume form as defined by " $\frac{dxdydz}{|x|}$ ", any (strict) fundamental domain for $\mathbf{SL}_2(\mathbb{Z})$ has volume $\frac{\pi}{3} \times \frac{\pi}{2} = \frac{\pi^2}{6}$. With respect to the same volume form, one can show that the volume of $\mathbf{SL}_2(\mathbb{Z}_p)$ (p-adic integers) is equal to $p^{-3} |\mathbf{SL}_2(\mathbb{Z}/p\mathbb{Z})|$ (which is equal to $1 - p^{-2}$ by Exercise U). The fact that $\zeta(2) = \frac{\pi^2}{6}$ shows that

$$\left(\frac{\pi}{3} \times \frac{\pi}{2}\right) \cdot \prod \frac{(p^2 - 1)p}{p^3} = \frac{\pi^2}{6} \cdot \prod (1 - p^{-2}) = 1.$$

By putting things together we have

$$\operatorname{Vol}(\operatorname{SL}_2(\mathbb{R})/\operatorname{SL}_2(\mathbb{Z})) \times \prod_p \operatorname{Vol}(\operatorname{SL}_2(\mathbb{Z}_p)) = 1.$$

In adelic language, this can be restated as $\operatorname{Vol}(\operatorname{SL}_2(\mathbb{A}_{\mathbb{Q}})/\operatorname{SL}_2(\mathbb{Q})) = 1$.

Hopefully the next three exercises can help you understand Lemma 1.26 from "Lecture 2" better. For this purpose, let $\pi : \mathbf{SL}_2(\mathbb{R}) \to \mathbf{SL}_2(\mathbb{R})/\mathbf{SL}_2(\mathbb{Z})$ be the natural quotient map. Recall that it is open and continuous. For $x \in \mathbf{SL}_2(\mathbb{R})/\mathbf{SL}_2(\mathbb{Z})$, define $\mathrm{Obt}_x : \mathbf{SL}_2(\mathbb{R}) \to \mathbf{SL}_2(\mathbb{R})/\mathbf{SL}_2(\mathbb{Z})$ by $\mathrm{Obt}_x(g) := g.x$. Then Obt_x is also open and continuous.

For our convenience, fix a distance function (i.e., a metric) $d(\cdot, \cdot) : \mathbf{SL}_2(\mathbb{R}) \times \mathbf{SL}_2(\mathbb{R}) \to \mathbb{R}_{\geq} 0^4$. For $\varepsilon > 0$, let $B_{I_2}(\varepsilon) := \{g \in \mathbf{SL}_2(\mathbb{R}), d(g, I_2) < \varepsilon\}$ (recall I_2 denotes the two-by-two identity matrix).

⁴you can choose any metric you like as long as it is compatible with the topology.

Exercise V. Show that for any compact subset $\mathscr{C} \subset SL_2(\mathbb{R})$, there exists $\varepsilon > 0$ such that for every $h \in \mathscr{C}$, the map

$$\operatorname{Obt}_{\pi(h)} : B_{\operatorname{I}_2}(\varepsilon) \to B_{\operatorname{I}_2}(\varepsilon).\pi(h)$$

is bijective.

(Hint: it boils down to showing that for some $\eta > 0$, for every $h \in \mathscr{C}$ and $\gamma_{\neq I_2} \in \mathbf{SL}_2(\mathbb{Z}), d(h\gamma h^{-1}, I_2) > \eta$.

Bijection + openness + continuity imply that $Obt_{\pi(h)} : B_{I_2}(\varepsilon) \to B_{I_2}(\varepsilon).\pi(h)$ is a homeomorphism.

For $\varepsilon > 0$, define $\operatorname{Cor}_{\varepsilon} : (-\varepsilon, \varepsilon) \times (-\varepsilon, \varepsilon) \times (-\varepsilon, \varepsilon) \to \operatorname{SL}_2(\mathbb{R})$ by

$$(t,s,r) \mapsto \left[\begin{array}{cc} e^t & 0\\ 0 & e^{-t} \end{array} \right] \cdot \left[\begin{array}{cc} 1 & 0\\ s & 1 \end{array} \right] \cdot \left[\begin{array}{cc} 1 & r\\ 0 & 1 \end{array} \right] = \mathbf{a}_t \cdot \mathbf{u}_s^- \cdot \mathbf{u}_r^+$$

Exercise W. Show that for $\varepsilon > 0$ small enough,

1. Image(Cor_{ε}) is open and that Cor_{ε} : $(-\varepsilon, \varepsilon)^3 \to$ Image(Cor_{ε}) is a homeomorphism. Moreover, there exists some positive continuous function $\lambda_{\varepsilon} : (-\varepsilon, \varepsilon)^3 \to \mathbb{R}_{>0}$ such that

2. $(\operatorname{Cor}_{\varepsilon})_*(\lambda_{\varepsilon} \cdot |\operatorname{dtdsdr}|)$ is equal to the restriction of $\operatorname{m}_{\operatorname{SL}_2(\mathbb{R})}$ to $\operatorname{Image}(\operatorname{Cor}_{\varepsilon})$.

(Hint: you might want to use the open set (actually a neighborhood of I_2) $\mathcal{O}_1 := \begin{cases} x & y \\ z & w \end{cases} \in \mathbf{SL}_2(\mathbb{R}) \mid x \neq 0 \end{cases}$ and the local coordinate

$$\mathcal{O}_1' := \left\{ (x, y, z) \in \mathbb{R}^3 \mid x \neq 0 \right\} \xrightarrow{\varphi_1} \mathcal{O}_1$$

with $\varphi_1(x, y, z) := \begin{bmatrix} x & y \\ z & \frac{1+yz}{x} \end{bmatrix}$ in the explicit construction of $m_{\mathbf{SL}_2(\mathbb{R})}$. Under this coordinate, $m_{\mathbf{SL}_2(\mathbb{R})}$ was defined by $(\varphi_1)_*(\frac{|dxdydz|}{|x|})$.

Exercise X. Combine the efforts from the above two exercises to prove that for every $\mathscr{C} \subset \mathbf{SL}_2(\mathbb{R})/\mathbf{SL}_2(\mathbb{Z})$ compact, there exists $\varepsilon > 0$ such that for every $\Lambda \in \mathbf{SL}_2(\mathbb{R})/\mathbf{SL}_2(\mathbb{Z})$, there exists a continuous positive function $\lambda_{\Lambda,\varepsilon} : (-\varepsilon,\varepsilon)^3 \to \mathbb{R}_{>0}$ such that

$$(\operatorname{Obt}_{\Lambda} \circ \operatorname{Cor}_{\varepsilon})_* (\lambda_{\Lambda,\varepsilon}(t,s,r) |\mathrm{dtdsdr}|)$$

is equal to the restriction of $m_{X_2}{}^5$ to the image of $Obt_{\Lambda} \circ Cor_{\varepsilon}$.

⁵When writing m_{X_2} , we have (implicitly) identified X_2 with $SL_2(\mathbb{R})/SL_2(\mathbb{Z})$.