习题 1

March 23， 2024

选取五道题解答。截止日期：4月5日课前（如果这一周不上课就延迟到 4 月 12 日课前）。中英文皆可。你们可以互相讨论（当然，我希望你们互相讨论！），或者查阅资料。但是写在纸上／latex 这一过程请务必独立完成。
当我引用课程讲义的时候，定理的编号等是按照 https：／／runlinzhang．github．io／ teaching2024sp 上的版本来。
Exercise A．Prove that there exists $c_{0}>0$ such that for every $q \in \mathbb{Z}^{+}, q^{2}\langle q \sqrt[3]{2}\rangle>c_{0}$ ．
Exercise B．Prove that for $n \in \mathbb{Z}^{+}$，the map $T_{n}:[0,1) \rightarrow[0,1)$ defined by $T_{n}(x)-n x \in \mathbb{Z}$ preserves the Lebesgue measure．Namely，for every Borel measurable subset E（not just intervals）of $[0,1)$ ，show that $\operatorname{Leb}\left(T_{n}^{-1}(E)\right)=\operatorname{Leb}(E)$ ．

Exercise C．Prove Cassels＇zero－one law（Theorem 1.19 of＂Lecture 1＂）without assuming ψ is non－increasing．

Exercise D．Find two non－increasing sequences of positive numbers $\left(a_{n}\right)_{n \in \mathbb{Z}^{+}}$and $\left(b_{n}\right)_{n \in \mathbb{Z}^{+}}$ such that $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} b_{n}=+\infty$ but $\sum_{n=1}^{\infty} \min \left\{a_{n}, b_{n}\right\}<+\infty$ ．
Exercise E．Prove Lemma 1.25 from＂Lecture 1＂using Lemma 1.24 from there．
Define（ N is a positive integer）

$$
\begin{aligned}
& \mathcal{L}:=\left\{(x, y) \in \mathbb{Z}^{2} \mid \operatorname{gcd}(x, y)=1,0<x<y\right\}, \\
& \mathcal{L}_{N}:=\{(x, y) \in \mathcal{L} \mid y<N\} .
\end{aligned}
$$

For every $(x, y) \in \mathcal{L}$ ，define $\pi(x, y):=\left(1, \frac{y}{x}\right) \in\{1\} \times(0,1)$ ．For every $N \in \mathbb{Z}^{+}$，define a measure μ_{N} on $\{1\} \times(0,1)$ by

$$
\mu_{N}:=\frac{1}{\# \mathcal{L}_{N}} \sum_{(x, y) \in \mathcal{L}_{N}} \delta_{\pi(x, y)}
$$

where $\delta_{(x, y)}$ is the Dirac measure supported on (x, y) defined by

$$
\delta_{(x, y)}(E)= \begin{cases}1 & \text { if }(x, y) \in E \\ 0 & \text { if }(x, y) \notin E .\end{cases}
$$

Exercise F．Prove that $\left(\mu_{N}\right)$ converges，in the weak＊topology，to the standard Lebesgue measure on $\{1\} \times(0,1)$ ．For simplicity，you are only required to show the following：for every interval $(a, b) \subset(0,1)$ ，one has

$$
\lim _{N \rightarrow \infty} \mu_{N}(\{1\} \times(a, b))=b-a .
$$

（Hint：adapt the proof of Lemma 1.29 from＂Lecture 1＂．）
Definition 0．1．Two lattices $\Lambda_{1}, \Lambda_{2} \subset \mathbb{R}^{2}$ are said to be commensurable iff $\Lambda_{1} \cap \Lambda_{2}$ is a finite－index subgroup in both Λ_{1} and Λ_{2} ．
Exercise G．Let $\Lambda_{0} \in \mathrm{X}_{2}$ be a unimodular lattice，then the set

$$
\left\{\Lambda \in \mathrm{X}_{2} \mid \Lambda \text { is commensurable with } \Lambda_{0}\right\}
$$

is dense in X_{2} ．

Recall $\mathrm{A}=\left\{\mathbf{a}_{t}: \left.=\left[\begin{array}{cc}e^{t} & 0 \\ 0 & e^{-t}\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}$.
Exercise H. Assume $\Lambda_{1}, \Lambda_{2} \in \mathrm{X}_{2}$ are commensurable. Show that

1. $\left(\mathbf{a}_{t} \Lambda_{1}\right)_{t>0}$ diverges ${ }^{1}$ iff $\left(\mathbf{a}_{t} \Lambda_{2}\right)_{t>0}$ diverges;
2. $\mathrm{A} . \Lambda_{1}$ is bounded (i.e., closure is compact) iff $\mathrm{A} . \Lambda_{2}$ is bounded.

Exercise I. For $\varepsilon>0$, let $B_{\varepsilon}:=\left\{x \in \mathbb{R}^{2},\|x\|<\varepsilon\right\}$. Show that for any $\Lambda \in \mathrm{X}_{2}$, one has $\Lambda \cap B_{1} \subset \mathbb{Z} . \mathbf{v}$ for some $\mathbf{v} \in \Lambda$.

Exercise J. For $\alpha \in[0,1)$, let $\Lambda_{\alpha} \in \mathrm{X}_{2}$ be as in the lecture notes. Show that $\left(\mathbf{a}_{t} \cdot \Lambda_{\alpha}\right)_{t>0}$ diverges iff $\alpha \in \mathbb{Q}$.
(Hint: you might want to use Exercise I.)
Exercise K. Use Exercise J to give another proof of the fact that for some constant $C>0$, for every irrational number α, there are infinitely many $q \in \mathbb{Z}^{+}$such that $q\langle q \alpha\rangle<C$.

Below we sketch, in the form of exercises, how to prove an inhomogeneous analogue of this.

Definition 0.2. We define

$$
\mathrm{Y}_{2}:=\left\{(\Lambda, \mathbf{v}+\Lambda) \mid \Lambda \in \mathrm{X}_{2}, \mathbf{v}+\Lambda \in \mathbb{R}^{2} / \Lambda\right\}
$$

An element $(\Lambda, \mathbf{v}+\Lambda) \in \mathrm{Y}_{2}{ }^{2}$ is referred to as a unimodular grid. A sequence $\left(\Lambda_{n}, \mathbf{v}_{n}+\right.$ $\left.\Lambda_{n}\right)$ converges to $(\Lambda, \mathbf{v}+\Lambda)$ iff there are $\mathbf{x}_{n}, \mathbf{y}_{n}, \mathbf{v}_{n}^{\prime} \in \mathbb{R}^{2}$ and $\mathbf{x}, \mathbf{y}, \mathbf{v}^{\prime} \in \mathbb{R}^{2}$, such that

$$
\Lambda_{n}=\mathbb{Z} \mathbf{x}_{n}+\mathbb{Z} \mathbf{y}_{n}, \mathbf{v}_{n}+\Lambda_{n}=\mathbf{v}_{n}^{\prime}+\Lambda_{n}, \Lambda=\mathbb{Z} \mathbf{x}+\mathbb{Z} \mathbf{y}, \mathbf{v}+\Lambda=\mathbf{v}^{\prime}+\Lambda
$$

$\left(\mathbf{x}_{n}\right)$ converges to $\mathbf{x},\left(\mathbf{y}_{n}\right)$ converges to \mathbf{y}, and $\left(\mathbf{v}_{n}^{\prime}\right)$ converges to \mathbf{v}.
Also note that $\mathbf{S L}_{2}(\mathbb{R})$ acts on Y_{2} by $(g, \mathbf{v}+\Lambda) \mapsto g \mathbf{v}+g \Lambda$.
Exercise L. Let B_{ε} be as above. Show that for $\varepsilon>0$ sufficiently small (say, $\varepsilon=0.01$ should suffice), for any unimodular grid $(\Lambda, \mathbf{v}+\Lambda)$, one has that $B_{\varepsilon} \cap(\mathbf{v}+\Lambda)$ is contained in a line (not necessarily passing through the origin).

For $\alpha, \beta \in[0,1)$, define a unimodular grid by $y_{\alpha, \beta}=\left(\Lambda,(\beta, 0)^{\operatorname{tr}}+\Lambda\right) \in \mathrm{Y}_{2}{ }^{3}$.
Exercise M. Take $\alpha, \beta \in[0,1)$. The following two are equivalent:

1. for any $\varepsilon>0$, there exists $t_{0}>0$ such that for all $t>t_{0}, \mathbf{a}_{t} . y_{\alpha, \beta} \cap B_{\varepsilon} \neq \emptyset$;
2. $\beta \in \mathbb{Z}+\mathbb{Z} \alpha$.

Exercise N. Using the above two exercises (or use any other methods you might know) to show that for some constant $C>0$, for every $\alpha, \beta \in[0,1)$ with $\beta \notin \mathbb{Z}+\mathbb{Z} \alpha$, there are infinitely many $q \in \mathbb{Z}^{+}$, such that $q\langle q \alpha+\beta\rangle<C$.

Recall that in the first lecture, the homogeneous version was deduced from a theorem of Dirichlet, which is no longer true in the inhomogeneous setting.

Exercise O. Prove that for any $c>0$, there exist $\alpha, \beta \in \mathbb{R}$ such that there exists infinitely many $N \in \mathbb{Z}^{+}$such that for every $q \in\{0,1, \ldots, N-1\}$,

$$
\langle q \alpha+\beta\rangle>\frac{c}{N}
$$

Actually, maybe your proof is good enough to show the same conclusion holds replacing $\forall c>0$ and $\frac{c}{N}$ by any other function $N \mapsto \psi(N)$ decreasing to 0 (the choice of α, β would depend on this ψ).

Below we give an application that does not belong to Diophantine approximation.

[^0]Exercise P. Show that there exists a bounded set in X_{2} such that every A -orbit intersects with that bounded set non-trivially.
(hint: you might want to use Exercise I).
Let

$$
\begin{aligned}
& X(\mathbb{R}):=\left\{M \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \mid \operatorname{det}(M)=-1, \operatorname{Trace}(M)=0\right\} \\
& X(\mathbb{Z}):=\left\{M \in \operatorname{Mat}_{2 \times 2}(\mathbb{Z}) \mid \operatorname{det}(M)=-1, \operatorname{Trace}(M)=0\right\}
\end{aligned}
$$

Note that $\mathbf{S L}_{2}(\mathbb{R})$ acts on $X(\mathbb{R})$ by $(g, M) \mapsto g M g^{-1}$. Similarly, $\mathbf{S L}_{2}(\mathbb{Z})$ acts on $X(\mathbb{Z})$.
Exercise Q. Show that the action $\mathbf{S L}_{2}(\mathbb{R}) \curvearrowright X(\mathbb{R})$ is transitive.
Exercise R. Show that the action $\mathbf{S L}_{2}(\mathbb{Z}) \curvearrowright X(\mathbb{Z})$ has only finitely many orbits.
(Hint: note that the stabilizer of the diagonal matrix $\operatorname{diag}(1,-1)$ in $\mathbf{S L}_{2}(\mathbb{R})$ contains A. Then use Exercise P. Of course you are welcome to use any other method.)

Essentially, Lemma 1.23 from the Lecture 2 shows that the map

$$
\mathbf{S L}_{2}(\mathbb{R}) \rightarrow \mathcal{U}:=\text { Unitary Operators on } L^{2}\left(\mathrm{X}_{2}, \mathrm{~m}_{\mathrm{X}_{2}}\right)
$$

defined by $g \mapsto U_{g}$ with $\left(U_{g} . \phi\right)(x):=\phi\left(g^{-1} x\right)$ is continuous if \mathcal{U} is equipped with the "strong operator topology".
Exercise S. Show that this map form $\mathbf{S L}_{2}(\mathbb{R}) \rightarrow \mathcal{U}$ is not continuous if \mathcal{U} is equipped with the operator norm topology.

The purpose of the following two exercises is to show you a curious calculation.
Exercise T. Define

$$
\mathcal{R}:=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\,-\frac{1}{2}<x<\frac{1}{2}\right., x^{2}+y^{2}>1, y>0\right\}
$$

Calculate the following double integral

$$
\int_{\mathcal{R}} \frac{\mathrm{dxdy}}{y^{2}}=\frac{\pi}{3}
$$

Exercise U. Let p be a prime number, show that $\# \mathbf{S L}_{2}(\mathbb{Z} / p \mathbb{Z})=\left(p^{2}-1\right) p$.
(Hint: find out $\# \mathbf{G L}_{2}(\mathbb{Z} / p \mathbb{Z})$ first.)
Remark. It is not necessary to read this, but here are some contexts about the exercises T and U above. Exercise T shows that with respect to the volume form as defined by " $\frac{\text { dxdydz }}{|x|}$, any (strict) fundamental domain for $\mathbf{S L}_{2}(\mathbb{Z})$ has volume $\frac{\pi}{3} \times \frac{\pi}{2}=\frac{\pi^{2}}{6}$. With respect to the same volume form, one can show that the volume of $\mathbf{S L}_{2}\left(\mathbb{Z}_{p}\right)$ (p-adic integers) is equal to $p^{-3}\left|\mathbf{S L}_{2}(\mathbb{Z} / p \mathbb{Z})\right|$ (which is equal to $1-p^{-2}$ by Exercise U). The fact that $\zeta(2)=\frac{\pi^{2}}{6}$ shows that

$$
\left(\frac{\pi}{3} \times \frac{\pi}{2}\right) \cdot \prod \frac{\left(p^{2}-1\right) p}{p^{3}}=\frac{\pi^{2}}{6} \cdot \prod\left(1-p^{-2}\right)=1
$$

By putting things together we have

$$
\operatorname{Vol}\left(\mathbf{S L}_{2}(\mathbb{R}) / \mathbf{S L}_{2}(\mathbb{Z})\right) \times \prod_{p} \operatorname{Vol}\left(\mathbf{S L}_{2}\left(\mathbb{Z}_{p}\right)\right)=1
$$

In adelic language, this can be restated as $\operatorname{Vol}\left(\mathbf{S L}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) / \mathbf{S L}_{2}(\mathbb{Q})\right)=1$.
Hopefully the next three exercises can help you understand Lemma 1.26 from "Lecture 2 " better. For this purpose, let $\pi: \mathbf{S L}_{2}(\mathbb{R}) \rightarrow \mathbf{S L}_{2}(\mathbb{R}) / \mathbf{S L}_{2}(\mathbb{Z})$ be the natural quotient map. Recall that it is open and continuous. For $x \in \mathbf{S L}_{2}(\mathbb{R}) / \mathbf{S L}_{2}(\mathbb{Z})$, define Obt_{x} : $\mathbf{S L}_{2}(\mathbb{R}) \rightarrow \mathbf{S L}_{2}(\mathbb{R}) / \mathbf{S L}_{2}(\mathbb{Z})$ by $\operatorname{Obt}_{x}(g):=g . x$. Then Obt_{x} is also open and continuous.

For our convenience, fix a distance function (i.e., a metric) $d(\cdot, \cdot): \mathbf{S L}_{2}(\mathbb{R}) \times \mathbf{S L}_{2}(\mathbb{R}) \rightarrow$ $\mathbb{R}_{\geq} 0^{4}$. For $\varepsilon>0$, let $B_{\mathrm{I}_{2}}(\varepsilon):=\left\{g \in \mathbf{S L}_{2}(\mathbb{R}), d\left(g, \mathrm{I}_{2}\right)<\varepsilon\right\}$ (recall I_{2} denotes the two-bytwo identity matrix).

[^1]Exercise V. Show that for any compact subset $\mathscr{C} \subset \mathbf{S L}_{2}(\mathbb{R})$, there exists $\varepsilon>0$ such that for every $h \in \mathscr{C}$, the map

$$
\operatorname{Obt}_{\pi(h)}: B_{\mathrm{I}_{2}}(\varepsilon) \rightarrow B_{\mathrm{I}_{2}}(\varepsilon) \cdot \pi(h)
$$

is bijective.
(Hint: it boils down to showing that for some $\eta>0$, for every $h \in \mathscr{C}$ and $\gamma_{\neq \mathbf{I}_{2}} \in$ $\mathbf{S L}_{2}(\mathbb{Z}), d\left(h \gamma h^{-1}, \mathrm{I}_{2}\right)>\eta$.

Bijection + openness + continuity imply that $\mathrm{Obt}_{\pi(h)}: B_{I_{2}}(\varepsilon) \rightarrow B_{I_{2}}(\varepsilon) \cdot \pi(h)$ is a homeomorphism.

For $\varepsilon>0$, define $\operatorname{Cor}_{\varepsilon}:(-\varepsilon, \varepsilon) \times(-\varepsilon, \varepsilon) \times(-\varepsilon, \varepsilon) \rightarrow \mathbf{S L}_{2}(\mathbb{R})$ by

$$
(t, s, r) \mapsto\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 0 \\
s & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & r \\
0 & 1
\end{array}\right]=\mathbf{a}_{t} \cdot \mathbf{u}_{s}^{-} \cdot \mathbf{u}_{r}^{+}
$$

Exercise W. Show that for $\varepsilon>0$ small enough,

1. Image $\left(\operatorname{Cor}_{\varepsilon}\right)$ is open and that $\operatorname{Cor}_{\varepsilon}:(-\varepsilon, \varepsilon)^{3} \rightarrow \operatorname{Image}\left(\operatorname{Cor}_{\varepsilon}\right)$ is a homeomorphism.

Moreover, there exists some positive continuous function $\lambda_{\varepsilon}:(-\varepsilon, \varepsilon)^{3} \rightarrow \mathbb{R}_{>0}$ such that
2. $\left(\operatorname{Cor}_{\varepsilon}\right)_{*}\left(\lambda_{\varepsilon} \cdot|\mathrm{dtdsdr}|\right)$ is equal to the restriction of $\mathrm{m}_{\mathbf{S L}_{2}(\mathbb{R})}$ to Image $\left(\operatorname{Cor}_{\varepsilon}\right)$.
(Hint: you might want to use the open set (actually a neighborhood of I_{2}) $\mathcal{O}_{1}:=$ $\left\{\left.\left[\begin{array}{cc}x & y \\ z & w\end{array}\right] \in \mathbf{S L}_{2}(\mathbb{R}) \right\rvert\, x \neq 0\right\}$ and the local coordinate

$$
\mathcal{O}_{1}^{\prime}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \neq 0\right\} \xrightarrow[\simeq]{\varphi_{1}} \mathcal{O}_{1}
$$

with $\varphi_{1}(x, y, z):=\left[\begin{array}{cc}x & y \\ z & \frac{1+y z}{x}\end{array}\right]$ in the explicit construction of $\mathrm{m}_{\mathbf{S L}_{2}(\mathbb{R})}$. Under this coordinate, $\mathbf{m}_{\mathbf{S L}_{2}(\mathbb{R})}$ was defined by $\left(\varphi_{1}\right)_{*}\left(\frac{\mid \text { dxdydz } \mid}{|x|}\right)$.)
Exercise X. Combine the efforts from the above two exercises to prove that for every $\mathscr{C} \subset \mathbf{S L}_{2}(\mathbb{R}) / \mathbf{S L}_{2}(\mathbb{Z})$ compact, there exists $\varepsilon>0$ such that for every $\Lambda \in \mathbf{S L}_{2}(\mathbb{R}) / \mathbf{S L}_{2}(\mathbb{Z})$, there exists a continuous positive function $\lambda_{\Lambda, \varepsilon}:(-\varepsilon, \varepsilon)^{3} \rightarrow \mathbb{R}_{>0}$ such that

$$
\left(\mathrm{Obt}_{\Lambda} \circ \operatorname{Cor}_{\varepsilon}\right)_{*}\left(\lambda_{\Lambda, \varepsilon}(t, s, r)|\operatorname{dtdsdr}|\right)
$$

is equal to the restriction of $\mathrm{m}_{\mathrm{X}_{2}}{ }^{5}$ to the image of $\mathrm{Obt}_{\Lambda} \circ \mathrm{Cor}_{\varepsilon}$.

[^2]
[^0]: ${ }^{1}$ i.e., for any compact subset $\mathscr{C} \subset \mathrm{X}_{2}$, there exists $t_{0}>0$ such that for all $t>t_{0}, \mathbf{a}_{t} \Lambda_{1} \notin \mathscr{C}$.
 ${ }^{2}$ this is sometimes abbreviated as $\mathbf{v}+\Lambda$
 3^{3} we take transpose of a row vector as by convention, we write vectors as column vectors

[^1]: ${ }^{4}$ you can choose any metric you like as long as it is compatible with the topology.

[^2]: ${ }^{5}$ When writing $\mathrm{m}_{\mathrm{X}_{2}}$, we have (implicitly) identified X_{2} with $\mathbf{S L}_{2}(\mathbb{R}) / \mathbf{S L}_{2}(\mathbb{Z})$.

